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ABSTRACT 
In its original form the Dirac equation for the free electron and the free positron is 
formulated by using complex number based spinors and matrices. That equation can be split 
into two equations, one for the electron and one for the positron. If we use proper time 
rather than coordinate time, then these equations can easily be converted to their 
quaternionic format. The equation for the electron and the equation for the positron differ 
in the sign of a curl term. This means that the solutions differ in the handedness of the 
external vector product. This results in special considerations for the corresponding 
quaternionic wave equation. 
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The Dirac equation in original format 
In its original form the Dirac equation is a complex equation that uses spinors, matrices 
and partial derivatives.  

Instead of the usual {𝑖
𝜕𝑓

𝜕𝜏
 , 𝑖

𝜕𝑓

𝜕𝑥
, 𝑖

𝜕𝑓

𝜕𝑦
, 𝑖

𝜕𝑓

𝜕𝑧
} we use operators 𝛻 = {∇0,𝛁} 

Subscript 0 indicates the real part. Bold face indicates the imaginary part. 
 
Here 𝜏 is representing local proper time rather than local coordinate time 𝑡. 
In quaternionic format a coordinate time step ∆𝑡 is the sum of a proper time step ∆𝜏 and a 
space step. The proper time step ∆𝜏 is a real number. The space step is an imaginary 
quaternionic number. The original Dirac equation does not pay attention to the difference 
between coordinate time and proper time. 
 
With these ingredients, the Dirac equation runs 
 

∇0{𝜓} + 𝛁𝛂{𝜓} = 𝑚𝛽{𝜓} 
 
𝛂 and 𝛽 represent the matrices that implement the quaternion behavior including the sign 
flavors of quaternionic number systems and continuums.  
 
 

𝛼1 = [
0 𝜎1

−𝜎1 0
] = [

0 𝒊
−𝒊 0

] 

 

𝛼2 = [
0 𝜎2

−𝜎2 0
] = [

0 𝒋
−𝒋 0

] 

 

𝛼3 = [
0 𝜎3

−𝜎3 0
] = [

0 𝒌
−𝒌 0

] 

 

𝛽 = [
0 1
1 0

] 

 
The Pauli1 matrices  𝜎1, 𝜎2, 𝜎3 are given by: 
 

𝜎1 = [
0  1
1 0

] , 𝜎2 = [ 
0 −𝑖
𝑖 0

] , 𝜎3 = [
1 0
0 −1

]

 
They relate to the quaternionic base vectors 1, 𝒊, 𝒋 and 𝒌 
 

1 ⟼ 𝐼, 𝒊 ⟼  𝜎1, 𝒋 ⟼  𝜎2, 𝒌 ⟼  𝜎3 
 

Splitting into two equations 
The four component spinors {𝜓} can be converted in two component spinors {𝜓𝑅} and {𝜓𝐿}. 
Transferring the matrix form of the Dirac equation into quaternionic format delivers two 

                                                      
1 http://en.wikipedia.org/wiki/Pauli_matrices  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Pauli_matrices


quaternionic fields 𝜓𝑒 and 𝜓𝑝 that replace the spinors and that couple two equations of 

motion. One of these fields is right handed and the other is left handed. 
 

∇0𝜓𝑒𝑅 + 𝛁𝜓𝑒𝑅 = 𝑚𝜓𝑒𝐿 
 

∇0𝜓𝑝𝐿 − 𝛁𝜓𝑝𝐿 = 𝑚𝜓𝑝𝑅 

 
The factor 𝑚 couples 𝜓𝑒 and 𝜓𝑝. 

These fields are each other’s quaternionic conjugate. At the same time they differ in 
handedness of the external vector product. 
 

𝜓𝑅 = 𝜓𝐿
∗ = 𝜓0 + 𝝍 

 

Due to the four dimensions of quaternions, these fields represent two different sign flavors 
of one and the same quaternionic field that exists in 16 versions that only differ in their 
discrete symmetry set. 

The quaternionic format 
Reformulating the quaternionic equation for the free electron gives 
 

∇𝜓𝑒 = 𝑚 𝜓𝑒
∗ 

 
𝛻0𝜓0 −  〈𝜵, 𝝍𝒆〉 = 𝑚 𝜓0  

 
𝛻0𝝍𝒆 + 𝜵𝜓0 ±  𝜵 × 𝝍𝒆 = −𝑚 𝝍𝒆 

 
𝑚𝜓𝑒 = (∇𝜓𝑒)∗ = 𝛻0𝜓0 − 〈𝜵, 𝝍𝒆〉 − 𝛻0𝝍𝒆 − 𝜵𝜓0 ∓  𝜵 × 𝝍𝒆 

 
The ± sign indicates the choice between right handed and left handed versions of 
quaternions. 
For the antiparticle holds 
 

∇∗𝜓𝑝
∗ = 𝑚 𝜓𝑝  

 
𝛻0𝜓0 −  〈𝜵, 𝝍𝒑〉 = 𝑚 𝜓0  

 
−𝛻0𝝍𝒑 − 𝜵𝜓0 ±  𝜵 × 𝝍𝒑 = +𝑚 𝝍𝒑 

 
𝑚 𝜓𝑝 = ∇∗𝜓𝑝

∗ = 𝛻0𝜓0 −  〈𝜵, 𝝍𝒑〉 − 𝛻0𝝍𝒑 − 𝜵𝜓0 ±  𝜵 × 𝝍𝒑 

 
The equations 4 and 8 differ in the sign of the 𝜵 × 𝝍 term. For example: 
 

(∇𝜓)∗ = ∇∗𝜓∗ − 2 𝜵 × 𝝍 
 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 



The Dirac equation can only be valid when for the particle the external product of the 
solution 𝜓𝑒 is right handed, while for the antiparticle the external product of the solution 𝜓𝑝 

is left handed. Thus, the two solutions belong to different symmetry flavors. 

The wave equation 
In general the non-homogeneous wave equation in quaternionic format is given by 
 

∇∗∇𝜒 ≡ ∇0
2 𝜒 + 〈𝛁, 𝛁〉 𝜒 =

𝜕2𝜒

𝜕𝜏2
+

𝜕2𝜒

𝜕𝑥2
+

𝜕2𝜒

𝜕𝑦2
+

𝜕2𝜒

𝜕𝑧2
= 𝜌 

 
With ∇𝜒 = 𝜑 follows ∇∗𝜑 = 𝜌 
 
Here 𝜒 represents the embedding continuum and 𝜌 represents a location density distribution 
of triggers. Equation 2 represents two continuity equations. 
 
By using the Dirac equation for the electron as the first continuity equation and the Dirac 
equation of the positron as the second continuity equation a sensible wave equation is 
obtained. This is a strange coupling between a right handed and a left handed field that is 
only justified in curl free conditions. 
Thus, the non-homogeneous wave equation for the combined electron and positron in curl 
free conditions is given by: 
 

∇∗∇𝜓 ≡ ∇0
2 𝜓 + 〈𝛁, 𝛁〉 𝜓 =

𝜕2𝜒

𝜕𝜏2
+

𝜕2𝜒

𝜕𝑥2
+

𝜕2𝜒

𝜕𝑦2
+

𝜕2𝜒

𝜕𝑧2
= 𝑚∇∗𝜓∗ = 𝑚2𝜓 

 
Any curl will add triggers to the right side of the equation. 
 
Equation (3) is the quaternionic equivalent of the Klein-Gordon equation. 
This quaternionic version has an Euclidean signature, where the Klein-Gordon equation 
represents a Minkowski signature. The Klein-Gordon equation (4) uses coordinate time 𝑡, 
where the quaternionic equivalent (3) uses proper time 𝜏. 
 

−
𝜕2𝜓

𝜕𝑡2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
= 𝑚2𝜓 

 
This difference indicates a difference in corresponding space-progression models. The 
solutions of the corresponding homogeneous wave equations differ, but in odd numbers of 
participating dimensions, both equations offer wave fronts as solutions. These wave fronts 
can be considered as carriers of information. 
 
In both space-progression models proper time is Lorentz invariant. A Lorentz transformation 
keeps proper time and proper time differences invariant. 

The coupling equation 
The Dirac equation is a more specific form of the coupling equation.  

(1) 

(2) 

(3) 

(4) 



The coupling equation holds generally for differentiable normalizable quaternionic functions: 
 

𝜙 = ∇𝜒 = 𝑚 𝜑; ‖𝜒‖ = ‖𝜑‖ = 1  
 
By adapting 𝜑, the coupling factor 𝑚 can become a real positive number. 
 

Quaternionic differential calculus 
Since quaternionic differential calculus uses proper time as progression parameter, the 
corresponding equations are inherently Lorentz invariant. The symmetry flavors of 
quaternionic number systems and the symmetry flavors of quaternionic functions pose a 
more serious problem for properly interpreting the differential equations. 
 
Quaternionic differential calculus is treated in more detail in “Quaternions and quaternionic 
Hilbert spaces”; http://vixra.org/abs/1411.0178 . 

(1) 

http://vixra.org/abs/1411.0178
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