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They’re building Church and University,
Deceiving the people continually.

Tell the children the truth!

Babylon System, Bob Marley

Abstract. I promised a second part. Here it is. I hesitated, because I
don’t like being destructive, and unfortunately, to deal with the current
state of affairs in quantum theory means just doing this: I show you
that the current gauge theory is fundamentally ill-designed, along with
it fall Weinberg model and Wightman theory.

1. Continuing with the Lagrangian Formalism
Let me continue from where I left off in the former part: As we saw, the
Lagrangian formalism for what is conceived to be the free quantum field
amounts to evaluate the extremal for δ < φ,Aφ > with A := (1/2)(�φ−m2).
Now, A is a self-adjoint operator, and for that operator it is plain vanilla
that the kernel of A is the space of the extremals of < φ,Aφ >, and in
this case happens to be the space of solutions of the Klein-Gordon equation
�φ−m2φ = 0.
The problem in here is that from �φ−m2φ = 0 it cannot be concluded that

L := (−1/2)
(
< ∂µφ, ∂

µφ > − < φ,m2φ >
)

or any of its equivalent reformulations is the correct Lagrangian: A can be
anything, for example the square or n-th power of A have the same kernel,
but they would define different Lagrangians. (In [6] I showed that there are
two distinct Lagrangians solving the very same equation of motion. Now we
see that there are arbitarily many.
Besides this: Does m2xµ for 0 ≤ µ ≤ 3 possess the dimension of an action?
No! But mxµ does! - The Lagrangian Formalism is simply meaningless!
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2. Gauge Fields
It is commonly held that the electromagnetic field was a U(1) gauge field.
Let me disprove it:
I refer to [8, Ch.7, p.125ff.] to discuss the things in a non-abstract mathemati-
cal way: Neuenschwander introduces a U(1) gauge transformation as mapping
φ(x) 7→ eiχ(x)φ(x) where χ is a real-valued function in [8, eq. 7.2] and defines
gauge invariance as invariance of the equations of motion under that gauge
transformation. He then shows that this gauge transformation transforms the
partial derivatives ∂µ to Dµ := ∂µ + iAµ, where Aµ := ∂µχ (see: [8, eq. 7.1.7]
and proves the gauge invariance of the Maxwell equations. Sofar, everything
is fine. The detrimental error comes in [8, Sec. 7.4], where Neuenschwander
argues that the equations of motions for a gauged transformed free field the-
ory would be the same as the free Lagrange equation with minimal coupling
φ 7→ φ − A, where A is the 4-potential of an external electromagnetic field;
so, both would be equivalent, i.e.: the theory of electromagnetism was a U(1)
gauge theory.
What is wrong is that the 4-potential Aµ = ∂µχ of a U(1) transformation
φ 7→ eiχφ is integrable (within R4) to a scalar function function, which is
χ. However, due to its non-zero rotation, a non-trivial electromagnetic 4-
potential never is integrable within R4. So, whatever U(1)-gauge is chosen,
no gauge field matches a non-zero electromagnetic 4-potential!

Therefore, whatever is described in a SU(2)×U(1) gauge theory, known
as Salam-Weinberg model (see:[10]), it cannot be the unification of weak and
electromagnetic theory!

Let’s dig deeper and work out, what could be missing to fix this:
The space X of all complex linear combinations of the four Dirac matri-
ces γ0, . . . , γ3 is a four-dimensional vector space with a (continuous) inner
product, defined by:

<
∑
µ

λµγµ,
∑
ν

κνγν >:=
∑
µ,ν

γ∗µλ̄µκνγν =
∑
µ

λ̄µκµ.

This space X then is isometric with C4, although the notion of orthono-
mality is lost within X, because γ∗µγν 6= 0 for µ 6= ν. So, a unitary map-
ping on C4 maps into a unitary mapping on X. Similarly, the restriction of
ι : C4 3 (λ0, . . . , λ3) 7→

∑
µ λµγµ ∈ X to real values of λµ is an isometry of

R4 to some (yet still complex) subspace Y ⊂ X, say. Both spaces R4 and Y
as well as C4 and X induce a different concept of differentiation: The differ-
entials dx0, . . . , dx3 on R4 or C4 become dx0γ0, . . . , dx3γ3 on X and Y . Now,
considering an electromagnetic for potential A = (A0, . . . , A3), then by gauge
invariance, as a function on R4, we can ensure that Aµdxν = −Aνdxµ for
µ 6= ν (which is not integrable). However, if I map this over to X (or Y ), A
becomes ιA = γ0A0 + · · ·+ γ3A3, and path integration along the µ-th coor-
dinate comes with an extra factor γµ. That means, we can now integrate ιA
along paths ω : [0, 1] 3 ξ 7→ X to some scalar function χ, which is real-valued
if all the Aµ are, so eiχ will be the desired gauge transformation.
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So, the trick played is to integrate ιA =
∑
µ γµAµ within X, but not A

within R4. But, where can we get the extra factors γµ from? - Let’s have a
look:

A current is described in electrodynamics as j = ρ(u0, . . . , u3), where u
is the 4-velocity. If that was to read instead j =

∑
µ jµγµ, not only we would

get the invariant j2 = j2
0−· · ·−j2

3 for its square, also, by leaving out the Dirac
matrices, we would erroneously turn the spinor into a scalar. Now j comes
as a factor in the resulting force on a test charge (density) in motion, j′, say.
Since we dropped the Dirac matrices in j, integrating the force in R4 will
run us in problems: What would come out as a scalar energy function after
path integration the spinor force will become a non-integrable, complicated
vector-potential of scalar components. And to enforce the integrability of that
vector-potential, it would need the artificial insertion of the Dirac matrices
again, which will give us a scalar action function.

But watch out: Beginning with a spinor j, the force (Per spinor test
charge) becomes itself a spinor force field F , path integration within Y will
result in a scalar potential, and another integration will then give the action
as a spinor field, and not a scalar field.
That implicitly means that as a gauge theory, electromagnetism cannot be
a U(1)-gauge theory: instead, the gauge transformation comes out as φ 7→
e
i
∑

µ
γµχµ , which, according to the metrics chosen in isometry with C4 is is

a unitary group, albeit one of dimension four, and not one! And there is only
one unitary group (up to isomorphism) of this dimension, which is U(2).
Again, this is satisfactory: In a charge symmetric world there is no absolute
means to tell what charge is positive and what negative: all we know is that
one observer may look at an electron as being negatively charged, while an-
other observer may determine its positive charge. A U(2) model fits perfectly
(and again advocates that it might be a good idea to accept the co-existence
of positrons with electrons).

I have one further point to make: The gauge invariance allows us to get
rid of the symmetric part of A, i.e. that part, that can be integrated into a
scalar function within the Euclidean metrics. In the first part I showed that
there is this antisymmetric part A, and that there is also this symmetric
part, which I denoted as the ”neutral mass”. Because the group of unitary
mappings on C4 is the group U(4), that would mean that, given all fields
were gauge theories, all neutral fields would go into a U(4)/U(2) gauge field,
where the divisor denotes the quotient class. It would also then imply that
we would only have two long-ranged forces, one for charges, and the rest for
neutral matter. I am rather sceptical as this being ultima ratio, and I would
expect either progress and change as to this.

3. Wightman Axioms
In the mid 60’s Arthur Wightman condensed what were thought to be the
basic assumptions and ingrediences of a Quantum Field Theory in a set of
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axioms (see e.g.: [9] for a good online source other than the original book
[11]).
In it, he states under the (W0) axiom, that the energy-momentum operator
is to have its spectrum contained in the forward light cone.
That seems fair - at first sight, because of causality reasons. But, it it detri-
mental:

Not only does it disallow time (or energy) inversion, which is so impor-
tant in classical physics, it disallows partity onversion either: Parity inversion
is the transformation of the location coordinates x 7→ −x. It is an error to
think that parity inversion maps the forward light cone into itself: it does not:
when you flip the time axis upside down, then the parity also gets inverted!
That means, you can’t have parity symmetry without the symmetry of time
inversion. So, not only would you loose the principle of time invariance, you
also would loose momentum conservation!
Sorry: That’s not what it’s supposed to be! It is just the old Platonic error,
be it Dirac, be it Wightman: A symmetry does not ask for exclusion, but
demands coexistence!

(When you theoretically cut off three of a baby’s limbs, would you expect
this theoretical child to behave like a real child?)

Neither is it comprehensible to exclude the interchange of time and lo-
cation coordinates for the sake of a dogma of positivity of the Minkowski
metrics, whereas in classical mechanics the replacement of any generalized
location coordinate with the time coordinate is allowed, nor is it comprehen-
sible to better speak of virtual. positive energetic particles moving backwards
in time, rather than frankly of real particles with negative energy, moving for-
ward in time!

There is actually more going wrong with the Wightman theory:
In axiom 1, the existence of a unitary representation of the Poincaré group
on a Hilbertspace H is demanded, where the the phase symmetric classes
{eiλΨ|λ ∈ R} of the unit vectors Ψ ∈ H are the states of the theory. Now,
Wightman does not explicitly demand the existence of self-adjoint, commut-
ing location operators Q1, . . . , Qn with R as their spectrum, each. However,
this is quantum-theoretically needed, in order to be able to deal with fields
as operator-valued distributions of x1, . . . , xn (and time t), as Wightman
does later on: all dimensional coordinates must be eigenvalues of observables,
which are self-adjoint operators on that Hilbertspace H. But that means that
no state of H can ever be translationally invariant along any of its location
coordinates: For, if Qk =

∫ +∞
−∞ λdEλ is the spectral representation of Qk

and Ψ ∈ H is a unit vector, then
∫ +∞
−∞ ‖Ψ(λ)‖2dλ = 1, where Ψ(λ) := EλΨ,

whereas translational invariance just demands Ψ(λ) = Ψ(λ+κ) for all κ ∈ R.
Now, in a subsequent axiom, Wightman demands the existence of a unique
Poincaré invariant state Ψ0, which is what is called the vacuum state. Be-
cause Poincaré invariance includes translational invariance, Ψ0 cannot be a
phase symmetric class of unit vectors of H. In all, that shows that if Ψ0
was to exist, then Q1, . . . , Qn are undefined as observables on H. But where
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do the location coordinates then come from? Above that: as an extension of
quantum theory, quantum field theory is in need of the location observables.

Further, accepting the nonexistency of the location observables, another
axiom states the cyclicity of the vacuum state. Because the Wightman fields
are operator valued distributions with support in the forward time-like light
cone, that implies that the vacuum state cannot be unique: There must be
three other ones, one for the negative timelike cone, and two for the two
spacelike regions of either sign of time: these are needed to conform with the
symmetries of space, time (, and charge) inversions.

You might wonder, why I included charge inversion above, for, isn’t
scalar Wightman theory a neutral theory?
The answer is that a neutral particle theory is not neutral, because it does
not contain any charges, but because it contains an equal amount of opposite
charges: opposite charges simply don’t just add up to nothing! So, a theory
is neutral if and only if it is invariant w.r.t. charge inversion. And invariance
is not equal to symmetry! To get it clear: We conceive an atom as a system
consisting of a positively charged nucleus and an oppositely charged shell of
electrons: that way, the atom is overall neutral, but it is not charge inversion
symmetric, because the nucleus is heavier than the electron shell. A sym-
metric situation would predict negatively charged nucleusses surrounded by
positrons at an equal rate. What’s going on? Let’s drill into it:
We know, we can deflect the electrons by light: light enters, scatters with the
electrons and exits. Now let’s revert the time direction: light enters, scatters
with the electrons, and exits - just as before. However, as we invert time,
everything that went in one spatial direction before, now goes the opposite
way: parity changed upon time inversion. So, the whole system undergoes
a T P inversion. But PCT ≡ 1, which means that the system is charge in-
variant: that means that as long as P and T are symmetries, C also is, and
physically, no charged particle can be distinguished from its PT inversion.
(This is mirrored by the fact that the electromagnetic field is phase invariant.)
There is hence no physical reason to expect that all atoms have in common
a positively charged nucleus and negatively charged electrons: as to the laws
of electrodynamics, this is just a gauging convention.

4. Mass Field
By the many years of its existence, classical mechanics is commonly held to
be a homogenous, self-consistent theory. Inside, however, it separates into
different concepts: one is the motional, another one a dynamical theory.
As to the motional theory, the system under consideration is a time curve
t 7→ (q1, . . . , qN ) of the N generalized location coordinates in space and time.
In the dynamical part, then, that’s not enough: we also need their canoni-
cally conjugated N momentum coordinates plus the total energy (which is the
canonical conjugate of time). This then leads straight into the Hamiltonian
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mechanics, in which 2N independent momentum and location parameters are
coupled by N Hamiltonian equations (of first order).
Interestingly, a different concept emerged even before that: The dynamical
system could be replaced by a mass-valued function m(~x(t)) = m(t, ~x)) in
space and time. Since the masses of all bodies are positive, they all add up,
so all positons, their speed, their momenta, and their energy can be identi-
fied, just through a mass-valued time curve in a three dimensional Euclidean
space. That means that a dynamical mechanical system of n objects would
be completely determined through the mass density curve t 7→ ρ(~x(t)), and
the famous Poisson equation, ∇2Φ = ρ, would then state the equivalence of
the gravitational field with the mechanical system. (And it was then really
understood that way by former physics.) Now, given the continuity of ρ, I
can integrate this scalar field along its three spatial ccordinates to a vector
field, and, replacing the differential dxk, for 1 ≤ k ≤ 3 by σkdxk, where the
σk are the Pauli matrices, I can sum the vector components up to a spinor
field S(~x(t)). Then ��∇S(~x(t)) = m(~x(t)) with ��∇ :=

∑
1≤k≤3 σk∂k. I can now

enforce the Poisson equation by multiplying ρ to the left by the derivative
−��∇ρ′(~x(t)) of a test mass distribution ρ′ and integration over R3, where I
assume that both ρ and ρ′ have a compact support in R3 for each t:

< −��∇ρ′,��∇S >:=
∫
R3
−(��∇ρ(~x(t)))��∇S(~x(t))d3x =

∫
ρ′(~x(t))∇2S(~x(t))d3x.

Because this is an unsymmetric, non-quadratic bilinear form, I prefer mul-
tiplication to the left not by the derivative ��∇ρ′, but by ρ′ itself, which will
turn the above equation into∫

ρ′(~x(t))ρ(~x(t))d3x = −
∫
S′(~x(t))∇2S(~x(t))d3x.

Now, mass is energy (divided by the square of the speed of light), so S is
the action. Once again: The knowledge of the action of a mechanical system
in space and time completely determines the mechanical system itself (and
vice versa).

Remark 4.1. If the non-relativistic gravitational field is a gauge theory at all,
then it must be an SU(2)-field, because its unitary group is spanned by the
three Pauli spinors, therefore is a three-dimensional group, which determines
it to be SU(2). And it looks like to become a gauge theory, if only one accepts
the formal relation 1/(

∑
k λkσk) = d(ln(

∑
k λkσk)/d(

∑
k λkσk) for λk 6= 0,

(1 ≤ k ≤ 3).

Then, when it comes to relativistics, we can do the analogous thing
as above, we just need to replace the Pauli spinors by the Dirac spinors,
and the closed loops in space become closed loops in space-time, albeit not
intersecting the light cone. Maxwell’s equations become the natural extension
of Poisson’s equation to the relativistic theory, in which spinors represent a
unified concept of matter, including charges (see: [5] for further details).
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[4] H. D. Hüttenbach, Analytic Functions For Clifford Algebras, http://vixra.

org/pdf/1408.0084v3.pdf, 2014.
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