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Abstract 
We present the sypersymmetric scalar-vector equations for massive and massless fields. The gauge invariance for 
the potentials described by second-order and first-order wave equations and for the field strengths described by the 
systems of Maxwell-like equations is demonstrated.  
 
1. Introduction 

In classical electrodynamics the electromagnetic field is described by scalar   and vector A


 
potentials [1]. The strengths of electric and magnetic fields are defined as: 

,

.

E A

H A

  

   

 

        (1.1) 

Here 


 is the Hamilton operator (nabla-operator) and we use the following notation for the time 
differential operator: 

1
c t


 


,      (1.2) 

where c is the speed of light. The electromagnetic field potentials satisfy the Lorentz gauge condition 

  0A   


.      (1.3) 

The equations for electromagnetic field are gauge-invariant. The substitutions  

,

,A A

  



 

 
         (1.4) 

do not change the electric and magnetic fields. Here ( , )r t   is arbitrary scalar function satisfying 
homogeneous wave equation (because of the Lorentz gauge (1.3)). The gauge invariance is a cornerstone 
of modern field theory [2]. However, if the mass of a field quantum is nonzero (massive field), there is a 
problem with the violation of gauge invariance [2, 3]. 

On the other hand, the Gibbs-Heaviside vector algebra, which usually used for the description of fields, 
does not adequately specify the space-time properties of physical fields with respect to the spatial and 
time inversions. From this point of view the algebras taking into account the space-time symmetries are 
more appropriate. Particularly, in recent years many attempts have been made to generalize the second-
order wave equation for massive field using different algebras of hypercomplex numbers, such as four-
component quaternions (including scalar and vector) and eight-component octonions (including scalar, 
vector (polar vector), pseudoscalar and pseudovector (axial vector)). The authors discussed the possibility 
of constructing the field equations similar to the equations of electrodynamics but with a 
massive ”photon”. In particular they tried to represent the wave equation as the system of first-order 
Maxwell-like equations. However, the resulting Proca-Maxwell equations enclosing field’s strengths and 
potentials are not gauge invariant [4-6]. Besides, a consistent relativistic approach implies equally the 
space and time symmetries that require the consideration of the extended sixteen-component space-time 
algebras. There are a few approaches in the development of field theory on the basis of sixteen-
component structures. One of them is the application of hypernumbers sedenions, which are obtained 
from octonions by Cayley-Dickson extension procedure [7, 8]. But the essential imperfection of 
sedenions is their nonssociativity. Another approach is based on the application of hypercomplex 
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multivectors generating associative space-time Clifford algebras [4, 9]. However, the application of such 
sixteen-component structures is considered in general as the abstract algebraic schemes enabling the 
factorization of Klein-Gordon operator. 

Recently we proposed the space-time algebra of sixteen-component sedeons generating 
noncommutative associative scalar-vector Clifford algebra [10, 11]. The sedeons take into account the 
properties of physical values with respect to the space-time inversion and realize the scalar-vector 
representation of Poincare group. In present paper, we use the sedeonic approach for the consideration of 
massive fields described by sedeonic second-order and first-order wave equations within a unified field 
conception. The gauge invariance of supersymmetric sedeonic field equations is demonstrated. 

2. Space-time sedeons 
 

The sedeonic algebra [10] encloses four groups of values, which are differed with respect to spatial 
and time inversion.  
 Absolute scalars ( )V and absolute vectors ( )V


 are not transformed under spatial and time inversion.  

 Time scalars ( )Vt  and time vectors ( )Vt


 are changed (in sign) under time inversion and are not 

transformed under spatial inversion.  
 Space scalars ( )Vr  and space vectors ( )Vr


 are changed under spatial inversion and are not 

transformed under time inversion.  
 Space-time scalars ( )Vtr  and space-time vectors ( )Vtr


 are changed under spatial and time inversion. 

Here indexes t  and r  indicate the transformations ( t  for time inversion and r  for spatial inversion), 
which change the corresponding values. All introduced values can be integrated into one space-time 
sedeon V , which is defined by the following expression:  

V V V V V V V V       t t r r tr trV
   

 .    (2.1) 

Let us introduce a scalar-vector basis 0a , 1a
 , 2a

 , 3a
 , where the element 0a  is an absolute scalar unit 

( 10a ), and the values 1a
 , 2a

 , 3a
  are absolute unit vectors generating the right Cartesian basis. Further 

we will indicate the absolute unit vectors by symbols without arrows as 1a , 2a , 3a . We also introduce the 
four space-time units 0e , 1e , 2e , 3e , where 0e  is an absolute scalar unit ( 10e ); 1e  is a time scalar unit 
( 1 te e ); 2e  is a space scalar unit ( 2 re e ); 3e  is a space-time scalar unit ( 3 tre e ). Using space-time 
basis e  and scalar-vector basis a  (Greek indexes , 0, 1, 2, 3  ), we can introduce unified sedeonic 
components V  in accordance with following relations: 

  00V V 0 0e a ,        
   01 02 03V V V V  0 1 2 3e a a a


,      
  10V Vt 1 0e a ,        

 11 12 13V V V V  t 1 1 2 3e a a a


,        (2.2) 
  20V Vr 2 0e a ,        
   21 22 23V V V V  r 2 1 2 3e a a a


,      
  30V Vtr 3 0e a ,        
   31 32 33V V V V  tr 3 1 2 3e a a a


.      

Then sedeon (2.1) can be written in the following expanded form: 

          00 01 02 03V V V V   0 0 1 2 3V e a a a a       
          10 11 12 13V V V V   1 0 1 2 3e a a a a      (2.3) 

              20 21 22 23V V V V   2 0 1 2 3e a a a a       
              30 31 32 33V V V V   3 0 1 2 3e a a a a .      

The sedeonic components V  are numbers (complex in general). Further we will omit units 0a  and 0e  for 
the simplicity. The important property of sedeons is that the equality of two sedeons means the equality of 
all sixteen components V .  
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Let us consider the multiplication rules for the basis elements na  and ke  (Latin indexes n, k = 1, 2, 3). 
The vectors na  and space-time units ke  satisfy the following rules:  

2 1 n n na a a ,              (2.4) 
 n k k na a a a (for n k ).             (2.5) 

i1 2 3a a a ,  i2 3 1a a a ,  i3 1 2a a a .                  (2.6) 
2 1 k k ke e e ,              (2.7) 

 n k k ne e e e (for n k ),             (2.8) 
i1 2 3e e e ,  i2 3 1e e e ,  i3 1 2e e e .                  (2.9) 

Here and further the value i  is imaginary unit 2( 1)i   . The multiplication and commutation rules for 
sedeonic absolute unit vectors na  and space-time units ke  can be presented for obviousness as the tables 
1 and 2.  
 

Table 1. Multiplication rules for absolute unit vectors na . 
 
 
 
 
 
 
 

Table 2. Multiplication rules for space-time units ke . 

 
 
 
 
 
 
 
 
Note that units ke  commute with vectors na : 

n k k na e e a               (2.10) 
for any n  and k . 

In sedeonic algebra we assume the Clifford multiplication of vectors. The sedeonic product of two 
vectors A


 and B


 can be presented in the following form: 

 AB A B A B     
    

.         (2.11) 

Here we denote the sedeonic scalar multiplication of two vectors (internal product) by symbol “  ” and 
round brackets 

  1 1 2 2 3 3A B A B A B A B   
 

,        (2.12) 
and sedeonic vector multiplication (external product) by symbol “ ” and square brackets 

     2 3 3 2 3 1 1 3 1 2 2 1A B i A B A B i A B A B i A B A B        
 

.     (2.13) 

Note that in sedeonic algebra the expression for the vector product differs from analogous expression in 
Gibbs vector algebra.  

 
3. Lorentz transformations 
 
In the frames of sedeonic algebra the transformation of values from one inertial coordinate system to 
another are carried out with the following sedeons: 

 1e  2e  3e  

1e  1 i 3e  i 2e  

2e  i 3e  1 i 1e  

3e  i 2e  i 1e  1 
 

 1a  2a  3a  

1a  1 i 3a  i 2a  

2a  i 3a  1 i 1a  

3a  i 2a  i 1a  1 
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*

cosh sinh ,

cosh sinh ,

m

m

 

 

 

 
tr

tr

L e

L e




      (3.1) 

where  tanh 2 /v c  ; c  is the speed of light; v  is the speed of uniform motion of the system along the 
absolute vector m . Note, that 

* * 1 L L LL    .       (3.2) 

Let us consider the Lorentz transformation of the sedeon V . The transformed sedeon V  can be written 
as sedeonic product 

* V L VL    .      (3.3) 

The transformed sedeon V  have the following components: 

     

     

     

     

cosh 2 sinh 2 ,

cosh 2 sinh 2 ,

cosh 2 1 sinh 2 ,

cosh 2 1 sinh 2 .

V V m V

V V m V

V V m V m V m

V V m V m V m

 

 

 

 

   

   

     

     

t t tr r

r r tr t

t t t tr r

r r r tr t

e

e

e

e





    

    

     (3.4) 

       

       

,
,

cosh 2 cosh 2 1 sinh 2 ,

cosh 2 cosh 2 1 sinh 2 .

V V
V V

V V m V m m V

V V m V m m V

  

  

 
 

        
        

tr tr

tr tr

tr tr tr tr

e

e

     

     

  (3.5) 

The Lorentz transforms (3.4) coincide with the common used transformations of field potentials in 
classical electrodynamics, while the transformations (3.5) are valid for the electromagnetic field strengths. 
 
4. Second-order equation for massive field 
 

Let us consider the sedeonic second-order wave equation for massive field [12]:  

   .i i m i i m        t r tr t r tr m me e e e e e W J
 

       (4.1) 

where mW  is a sedeonic potential, mJ is a phenomenological sedeonic source of massive field (index m). 
We use the following operators: 

0

1 ,

,

.

c t

x y z
m c

m


 


  

   
  



1 2 3a a a




     (4.2) 

Let us choose the potential as  

1 2 3 4 1 2 3 4ia ia a ia A A A iA       m t r tr r t trW e e e e e e
   

 ,    (4.3) 

where components Sa  and SA


 are real functions of coordinates and time. Here and further the index 
S = 1, 2, 3, 4. Also we take the source in the following form:  

1 2 3 4 1 2 3 4= i i i j j j j i          m t r tr r t trJ e e e e e e
   

 ,   (4.4) 

where S S4    ( k   is the volume density of charge) and S S

4j j
c
 

 
 ( Sj


 is volume density of current). 

Multiplying the operators in the left part of equation (4.1) we obtain the following wave equations for the 
components of potentials: 
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2 2
S S

2 2
S S

,

.

m a

m A j

    

    
           (4.7) 

Let us introduce the scalar Sg  and vector SG


 field strengths according the following definitions: 

 
 
 
 

1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1 2 4

2 2 2 1 3

3 3 3 4 2

4 4 4 3 1

,

,

,

,

,

,

,

.

g a A ma

g a A ma

g a A ma

g a A ma

G A a i A mA

G A a i A mA

G A a i A mA

G A a i A mA

     

     

     

     

       
       
       
       









    

    

    

    

    (4.8) 

The definitions of field strengths (4.8) have the specific gauge invariance. It is easy to verify that Sg  and 

SG


 are not changed under the following substitutions for the potentials:  

1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

.

a a m
a a m
a a m
a a m

A A

A A

A A

A A

 
 
 
 









  

  

  

  

 

 

 

 

  

  

  

  

        (4.9) 

Here 1 , 2 , 3 , 4  are arbitrary scalar functions satisfying the homogeneous Klein-Gordon wave 
equation. Taking into account (4.8) we get that  

   1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 ,

i i m ia ia a ia A A A iA

g ig ig ig G iG G G

          

        

t r tr t r tr r t tr

tr t r tr r t

e e e e e e e e e

e e e e e e

   

              (4.10) 

and the initial wave equation (4.1) is reduced to the following equation: 

  1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

i i m g ig ig ig G iG G G

i i i j j j j i   

           

        

t r tr tr t r tr r t

t r tr r t tr

e e e e e e e e e

e e e e e e

   

                (4.11) 

Producing the action of the operator on the left side of equation (4.11) and separating the values with 
different space-time properties, we obtain a system of equations for the field strengths, similar to the 
system of Maxwell equations in electrodynamics: 
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1 1 4 1

2 2 3 2

3 3 2 3

4 4 1 4

1 1 2 4 1

2 2 1 3 2

3 3 4 2 3

4 4 3 1 4

,

,

,

,

,

,

,

.

g G mg

g G mg

g G mg

g G mg

G g i G mG j

G g i G mG j

G g i G mG j

G g i G mG j









    

    

    

    

        
        
        
        









    

    

    

    

    (4.12) 

The system (4.12) is also invariant with respect to the following substitutions: 

1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

,

g g m
g g m
g g m
g g m

G G

G G

G G

G G

 
 
 
 









  
  

  

  

 

 

 

 

  

  

  

  

       (4.13) 

Multiplying each of the equations (4.12) to the corresponding field strength and adding these equations to 
each other, we obtain: 

 
       

       
       

2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 2 2 1 3 4 4 3

1 1 2 2 3 3 4 4 1

1
2

g g g g G G G G

g G g G g G g G

G g G g G g G g

i G G i G G i G G i G G

g g g g G   

       

          

       

                         

     

   

      

      

          

        1 2 2 3 3 4 4 .j G j G j G j     
    

 (4.14) 

This expression is the analog of Poynting’s theorem for massive field. The term 

 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1
8

w g g g g G G G G


       
   

    (4.15) 

plays the role of field energy density, while the term  

 1 1 2 2 3 3 4 4 1 2 3 44
cp g G g G g G g G i G G i G G


             
          (4.16) 

plays the role of energy flux density.  
On the other hand, applying the operator  i i m  t r tre e e


 to the equation (4.11) we obtain the 

following wave equation for the field strengths:  

   
   

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

i i m i i m g ig ig ig G iG G G

i i m i i i j j j j i   

             

            

t r tr t r tr tr t r tr r t

t r tr t r tr r t tr

e e e e e e e e e e e e

e e e e e e e e e

    

       (4.17) 

Separating the terms with different space-time properties we get the following wave equation for the field 
strength components Sg  and SG


: 
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2 2
1 1 1 4

2 2
2 2 2 3

2 2
3 3 3 2

2 2
4 4 4 1

2 2
1 1 1 2 4

2 2
2 2 2 1 3

2 2
3 3 3

,

,

,

,

,

,

m g j m

m g j m

m g j m

m g j m

m G j i j mj

m G j i j mj

m G j

 

 

 

 







         

        

        

        

            
            

       

 

 

 

 

    

    

  

 
4 2

2 2
4 4 4 3 1

,

.

i j mj

m G j i j mj

    
            

  

    

         (4.18) 

It can be seen that equations (4.18) are invariant with respect to the following substitutions: 

     

1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

.

m
m
m
m

j j

j j

j j

j j

   
   
   
   









  

  

  

  

 

 

 

 

 

 

 

 

          (4.19) 

As an example, let us consider the fields produced by a one type of sources 1  and 1j


. In this case the 
massive field is described by 1a  and 1A


 potentials: 

1 1ia Am t rW e e


 = .     (4.20) 

Then we have only the following nonzero field’s strengths:  

 1 1 1

4 1

1 1 1

2 1

4 1

,

,

,

,

,

g a A

g ma

G A a

G i A

G mA

    

 

  

    
 



  

 

 

     (4.21) 

and the wave equation (4.4) takes the following form: 

  1 4 1 2 4

1 1 .

i i m g ig G iG G

i j

        

  

t r tr r tr t

t r

e e e e e e

e e

  

        (4.22) 

Then the system (4.12) can be rewritten as 

 
 

 

1 1 4 1

2

4 4 1

1 1 2 4 1

2 1

4 2

4 4 1

,

,

0,

0,

,

0

0,

0.

g G mg

G

g G mg

G g i G mG j

G i G

i G mG

G g mG

    

  

    

        
     

     

   







    

 

 

 

         (4.23) 
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The system (4.23) is the analog of Proca-Maxwell equations. In addition, we have the following wave 
equations for the field strengths: 

   
 
 
 
 

2 2
1 1 1

2 2
4 1

2 2
1 1 1

2 2
2 1

2 2
4 1

,

,

,

,

.

m g j

m g m

m G j

m G i j

m G mj







        

     

     

        

     

 

  

  

 

            (4.24) 

Assuming the charge conservation  

 1 1 0j    
 

,             (4.25) 

we can choose the scalar field strength 1g  equal to zero. This is equivalent to the following gauge 
condition: 

 1 1 0a A    


,             (4.26) 

similar to the Lorentz gauge in electrodynamics. 

Let us consider the stationary field of point scalar source. In the static case 1 0j 


, and potential of the 
field can be chosen as  

 1i a rm tW e  = .            (4.27) 

Then we have only two nonzero field components: 

4 1

1 1

,

,

g ma

G a

 

 
       (4.28) 

and the following filed equations: 

 1 4 1

1

4 1

,

,

0

0.

G mg

i G

g mG

   

    

  






           (4.29) 

As an example, let us consider the field produced by scalar point source. In this case the charge density 
can be presented as  

 1 1q r 
 ,         (4.30) 

where 1q  is the point charge and  r
  is delta function. Then stationary wave equation can be written in 

the spherical coordinates as  

   2 2
1 12

1 r m a r q r
r rr


            

  .              (4.31) 

The partial solution of the equation (4.31), which decays at r  , is  

 1
1 expqa mr

r
  .     (4.32) 

Thus, the stationary field has scalar and vector components  

 1
4 expqg m mr

r
   ,     (4.33) 

 1
1 0

1 exp
q

G m mr r
r r

    
 

  ,    (4.34) 
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where 0r
  is a unit radial vector. 

Let us consider the interaction of two point charges 11q  and 12q  due to the overlap of their fields. 
Taking into account that the field in this case is the sum of the two fields 4 41 42g g g   and 1 11 12G G G 

  
, 

the energy of interaction is equal (see expression (4.15)) 

  12 41 42 11 12
1

4
W g g G G dV


  

 
,     (4.35) 

where the integral is over all space. Substituting (4.33) and (4.34), we obtain  

 11 12
12 expq qW mR

R
  ,       (4.36) 

where R  is the distance between the point charges.  
 

5. Second-order equation for massless field 

In the case of massless field the equation (4.1) takers the following form [13]: 

  i i      t r t r 0 0e e e e W J
 

  ,      (5.1) 

where we choose the potential 0W  and source 0J  of massless field (index 0) in the form of (4.3) and (4.4) 
as before  

1 2 3 4 1 2 3 4ib ib b ib B B B iB       0 t r tr r t trW e e e e e e
   

 ,    (5.2) 

1 2 3 4 1 2 3 4= i i i l l l l i          0 t r tr r t trJ e e e e e e
   

 ,   (5.3) 

where S S4    ( S   is the volume density of charge) and S S

4l l
c
 

 
 ( Sl 


 is volume density of current). We 

introduce the scalar and vector field strengths according following definitions:  

 
 
 
 

1 1 1

2 2 2

3 3 3

4 4 4 1

1 1 1 2

2 2 2 1

3 3 3 4

4 4 4 3

,

,

,

,

,

,

,

.

h b B

h b B

h b B

h b B

H B b i B

H B b i B

H B b i B

H B b i B

    

    

    

    

      
      
      
      

 

 

 

 

    

    

    

    

         (5.4) 

Note that the definitions (5.4) are invariant with respect to the following substitutions: 

1 1 1

2 2 2

3 3 3

4 4 4

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

.

b b
b b
b b
b b

B B

B B

B B

B B














 

 

 

 

 

 

 

 

  

  

  

  

      (5.5) 

Taking into account (5.4) we get 
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  1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 ,

i ib ib b ib B B B iB

h ih ih ih H iH H H

         

        

t r t r tr r t tr

tr t r tr r t

e e e e e e e e

e e e e e e

    

         (5.6) 

and wave equation (5.1) can be rewritten as 

  1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

i h ih ih ih H iH H H

i i i l l l l i   

          

        

t r tr t r tr r t

t r tr r t tr

e e e e e e e e

e e e e e e

    

          (5.7) 

Producing the action of the operator on the left side of equation (5.7) and separating the terms with 
different space-time properties, we obtain two independent systems of the equations for the field strengths, 
similar to the system of Maxwell equations in electrodynamics. The first system is 

 
 

1 1 1

2 2 2

1 1 2 1

2 2 1 2

,

,

,

.

h H

h H

H h i H l

H h i H l





   

   

       
       

 

 

   

   

      (5.8) 

This system is invariant with respect to the following substitutions: 

1 1 1

2 2 2

1 1 1

2 2 2

,
,

,

.

h h
h h

H H

H H








 
 

 

 

  

  

      (5.9) 

Multiplying each of the equations (5.8) to the corresponding field strength and adding these equations to 
each other, we obtain: 

 
   

   
   

   

2 2 2 2
1 2 1 2

1 1 2 2

1 1 2 2

1 2 2 1

1 1 2 2 1 1 2 2

1
2

.

h h H H

h H h H

H h H h

i H H i H H

h h H l H l 

   

    

   

           

     

 

   

   

     

  

        (5.10) 

This expression is the analog of Poynting’s theorem for first type of massless field. The term 

 2 2 2 2
1 2 1 2

1
8

w h h H H


   
 

         (5.11) 

plays the role of field energy density, while the term  

 1 1 2 2 1 24
cp h H h H i H H


     
            (5.12) 

plays the role of energy flux density.  
The second system is 

 
 

3 3 3

4 4 4

3 3 4 3

4 4 3 4

,

,

,

.

h H

h H

H h i H l

H h i H l





    

   

       
       

 

 

   

   

      (5.13) 

This system is invariant with respect to the following substitutions: 
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3 3 3

4 4 4

3 3 3

4 4 4

,
,

,

.

h h
h h

H H

H H








 

 

 

 

  

  

      (5.14) 

Multiplying each of the equations (5.13) to the corresponding field strength and adding these equations to 
each other, we obtain: 

 
   

   
   

   

2 2 2 2
3 4 3 4

3 3 4 4

3 3 4 4

3 4 4 3

3 3 4 4 3 3 4 4

1
2

.

h h H H

h H h H

H h H h

i H H i H H

h h H l H l 

   

    

   

           

     

 

   

   

     

  

        (5.15) 

This expression is the analog of Poynting’s theorem for second type of massless field. The term 

 2 2 2 2
3 4 3 4

1
8

w h h H H


   
 

         (5.16) 

plays the role of field energy density, while the term  

 3 3 4 4 3 44
cp h H h H i H H


     
            (5.17) 

plays the role of energy flux density.  
Accordingly, the wave equations for the massless field strengths are also divided into two independent 

systems. The first system combines the potentials and sources, which are transformed in accordance with 
Lorentz transformations of type I (see (3.4)) 

   
   
 
 

2
1 1 1

2
2 2 2

2
1 1 1 2

2
2 2 2 1

,

,

,

.

h l

h l

H l i l

H l i l









       

      

          
          





   

   

    (5.18) 

The second system combines the fields and sources, which are transformed in accordance with Lorentz 
transformations of type II (see (3.5)) 

   
   
 
 

2
3 3 3

2
4 4 4

2
3 3 3 4

2
4 4 4 3

,

,

,

.

h l

h l

H l i l

H l i l









       

       

          
          





   

   

      (5.19) 

The equations (5.18) and (5.19) are invariant with respect to the substitutions 
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1 1 1

2 2 2

3 3 3

4 4 4

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

.

l l

l l

l l

l l

  
  
  
  









 
  

 

  

 

 

 

 

  

  

  

  

           (5.20) 

The system of equations (5.8) corresponds to the usual system of Maxwell equations. Let us show it. If 
we assume the charge conservation  

 
 

1 1

2 2

0,

0,

l

l





    

   



      (5.21) 

then as it follows from (5.18) we can choose the scalar fields 1h  and 2h  equal to zero and obtain the 
following system: 

 
 

1 1

2 2

1 2 1

2 1 2

,

,

,

.

H

H

H i H l

H i H l





  

  

      
      

 

 

  

  

     (5.22) 

Here 1H


 is the electric field strength; 2H


 is the magnetic field strength; 1  is the volume density of 
electrical charge; 2  is the volume density of magnetic charge; 1l


 is the volume density of electrical 

current; 2l


 is the volume density of magnetic current. Taking into account the experimental fact that in 
our part of the universe there are no magnetic charges and currents, we obtain the system of equations  

 
 

1 1

2

1 2 1

2 1

,

0,

,

0,

H

H

H i H l

H i H

  

  

      
     

 

 

  

  

     (5.23) 

which coincides with the conventional system of Maxwell's equations. 
 

6. First-order equation for massive field 

Let us consider a massive field, which is described by the sedeonic first-order equation [12]: 

 i i m  t r tr m me e e W = I


   .            (6.1) 

Here mI  is the phenomenological field source, which can be chosen in the following sedeonic form: 

1 2 3 4 1 2 3 4d id id id f if f f        m tr t r tr r tI e e e e e e
   

    (6.2) 

where 4k kd d   ( kd   are the volume density of charges) and 4
k kf f

c
 

 
 ( kf 


 are the corresponding 

volume density of currents). Choosing the potential mW  in the form of (4.3) we can rewrite the equation 
(6.1) in the following expanded form 

   1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

i i m ia ia a ia A A A iA

d id id id f if f f

          

        

t r tr t r tr r t tr

tr t r tr r t

e e e e e e e e e

e e e e e e

   

     (6.3) 
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This sedeonic equation is equivalent to the following system: 

 
 
 
 

1 1 4 1

2 2 3 2

3 3 2 3

4 4 1 4

1 1 2 4 1

2 2 1 3 2

3 3 4 2 3

4 4 3 1 4

,

,

,

,

,

,

,

.

a A ma d

a A ma d

a A ma d

a A ma d

A a i A mA f

A a i A mA f

A a i A mA f

A a i A mA f

     

     

     

     

       
       
       
       









   

   

   

   

    (6.4) 

On the other hand, introducing the massless field strengths according the definitions (5.2) we get 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

g ig ig ig G iG G G

d id id id f if f f

       

        
tr t r tr r t

tr t r tr r t

e e e e e e

e e e e e e

   

       (6.5) 

It means that in fact the field strengths are non-zero only in the regions of the field sources.  
Applying the operator  i i m  t r tre e e


 to the equation (6.3) we obtain the following second-order 

wave equation: 

     
  

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 ,

i i m i i m ia ia a ia A A A iA

i i m d id id id f if f f

              

            

t r tr t r tr t r tr r t tr

t r tr tr t r tr r t

e e e e e e e e e e e e

e e e e e e e e e

    

     (6.6) 

which is equivalent to the following system: 

   
   
   
   
 
 
 

2 2
1 1 1 4

2 2
2 2 2 3

2 2
3 3 3 2

2 2
4 4 4 1

2 2
1 1 1 2 4

2 2
2 2 2 1 3

2 2
3 3 3

,

,

,

,

,

,

m a d f md

m a d f md

m a d f md

m a d f md

m A f d i f mf

m A f d i f mf

m A f d

         

         

         

         

           
           

       









    

    

 

 
4 2

2 2
4 4 4 3 1

,

.

i f mf

m A f d i f mf

   
           

 

    

    (6.7) 

It can be seen that equations (6.7) are invariant with respect to the following substitutions for the sources: 

1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

.

d d m
d d m
d d m
d d m

f f

f j

f f

f f

 
 
 
 









  
  

   

  

 

 

 

 

  

 

  

  

     (6.8) 

As an example, let us consider the fields produced by a one type of sources 4d  and 4f


: 
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4 4id f  m r tI e e


 ,            (6.9) 

In this case the equation (6.5) is rewritten as 
4 4 4 4ig G id f    r t r te e e e


.        (6.10) 

Applying the operator  i i m   1 2 3e e e


 to the equation (6.10) and separating the values with different 
space-time properties we obtain the following equations for the field strengths: 

   

4 4

4 4

4 4 4 4

4 4

4 4 4 4

,

,
1 ,

,

.

g d

G f

g G d f
c

G f

G g f d





       

       

    



 

 

  

        (6.11) 

Assuming the charge conservation 

 4 4 0d f   


,             (6.12) 

we have the following gauge condition:  

 4 4 0g G   


,            (6.13) 

which is similar to conventional Lorentz gauge, but for field strengths here. 
Let us consider a stationary field generated by a scalar point source. In this case we can choose the 

source as 

44i d  m rI e ,            (6.14) 

and density of charge as 

4 4 ( )d r  
 .            (6.15) 

where 4  is the point charge. Then the strength of the scalar field is 

   4 44g r r 
  .     (6.16) 

This field is non-zero only in the region of source. In particular, it indicates that two point charges interact 
only if they are at the same point of space. The interaction energy for two point charges 41  and 42  is 
equal 

 12 41 42 41 42
1 4

4 V

W g g dV R  


 


,           (6.17) 

where R


 is the vector of distance between point charges. 

 

7. First-order equation for massless field 
In massless case the first-order wave equation can be presented as 

 i    t r 0 0e e W I


  ,             (7.1) 

where the potential 0W  and phenomenological source 0I  have the following form: 

1 2 3 4 1 2 3 4ib ib b ib B B B iB       0 t r tr r t trW e e e e e e
   

 ,      (7.2) 

1 2 3 4 1 2 3 4i i i i               0 tr t r tr r tI e e e e e e    .   (7.3) 
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Here S S4    ( S   is the volume density of charge) and S S

4
c
  

   ( S 
  is volume density of current). The 

equation (7.1) is equivalent to the following system: 

 
 
 
 

1 1 1

2 2 2

3 3 3

4 4 4

1 1 2 1

2 2 1 2

3 3 4 3

4 4 3 4

,

,

,

,

,

,

,

.

b B

b B

b B

b B

B b i B

B b i B

B b i B

B b i B

















    

    

    

    

      
      
      
      

 

 

 

 

    

    

    

    

       (7.4) 

The equations (7.4) are invariant with respect to the substitutions (5.5). 
As an example, let us consider the massless field generated by scalar point source. In this case we can 

choose the scalar source in the form 
14 0I ,      (7.2) 

It follows that only scalar field strength 1h  (see definition (5.2) for massless field) is nonzero: 

1 14h  .                (6.10) 

This field is non-zero only in the region of source. The density of charge for point source is equal  

1 1 ( )r   
 ,                (6.11) 

where 1  is the point charge. Then the interaction energy of two point charges can be presented as 
follows (see (5.11)): 

12 11 12

1
4

W h h dV


  .      (6.12) 

Substituting (6.10) and (6.11), we obtain 

12 11 124 ( )W R  


,      (6.13) 

where R


 is the vector of distance between first and second charges. It indicates that two point charges 
interact only if they are at the same point of space. 

7. Discussion 
The gradient gauge invariance of the sedeonic equations describing the massive fields is a property of 

the operator  i i m  t r tre e e


 and can be generalized to a wider class of scalar-vector substitutions. 
Indeed, let us denote  

  ˆi i m    t r tre e e
 

,            (7.1) 

then the wave equation (4.1) takes the following form: 

ˆ ˆ m mW J
 

  .       (7.2) 

This equation is not changed under the following replacement of potential: 
 

ˆ  m mW W F E


    ,      (7.3) 

where F  and E  are arbitrary sedeons satisfy the following conditions:  
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ˆ 0 F

 ,             (7.4) 

ˆ ˆ 0 E
 

 .            (7.5) 

The condition (7.4) indicates that the potential mW  is defined up to an additive function F  satisfying the 
homogeneous first-order wave equation, while expression (7.5) means that E  satisfy the homogeneous 
second-order wave equation. Let us consider the generalized gradient gauge condition. For the potential 
determined by the expression (4.3) the function E  can be chosen as follows: 

1 2 3 4 1 2 3 4 ,i i i E iE E E          tr t r tr r tE e e e e e e
   

          (7.6) 

where components S  and SE


 are arbitrary real functions of coordinates and time. Then the replacement 
(7.3) leads us to the following system of substitutions: 

 
 
 
 

1 1 1 1 4

2 2 2 2 3

3 3 3 3 2

4 4 4 4 1

1 1 1 1 2 4

2 2 2 2 1 3

3 3 3 3 4 2

4 4

,

,

,

,

,

,

,

a a E m

a a E m

a a E m

a a E m

A A E i E mE

A A E i E mE

A A E i E mE

A A E

 

 

 

 







     

     

    

     

        
        
        

  

 

 

 

 

      

      

      

  
4 4 3 1.i E mE      

   

    (7.7) 

If we chose the vector part equal to zero ( S 0E 


), then the substitutions (7.7) are reduced to (4.9) 
and to (5.5) for the zero mass quantum. Analogous substitutions for the field strengths have the 
following form: 

 
 
 
 

1 1 1 1 4

2 2 2 2 3

3 3 3 3 2

3 3 4 4 1

1 1 1 1 2 4

2 2 2 2 1 3

3 3 3 3 4 2

4 4

,

,

,

,

,

,

,

g g E m

g g E m

g g E m

g g E m

G G E i E mE

G G E i E mE

G G E i E mE

G G E

 

 

 

 







     

    

      

     

       
        
        

 

 

 

 

 

      

      

      

  
4 4 3 1.i E mE      

   

    (7.8) 

If we chose the vector part equal to zero, then the substitutions (7.8) are reduced to (4.13) and to 
(5.5) for the zero mass quantum. 

8. Conclusion 

Thus we have presented the sypersymmetric scalar-vector equations for massive and massless fields. 
The gauge invariance for the potentials described by second-order and first-order wave equations and for 
the field strengths described by the systems of Maxwell-like equations has been demonstrated. As the 
example we considered the interaction of different point charges caused by the fields overlapping. 
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