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Abstract: It is demonstrated how to obtain quantities of free particles
and masses of nuclei from known equations of the electrovacuum around
the particle. A sampling method is used based on a higher number of
numerical tests. The single computation ends at a geometric limit, which
involves eigenvalues. These eigenvalues, significantly correlating with known
particle values (mass, spin, electric charge, magnetic moment) and also
masses of nuclei, are detected. This allows predicting particle quantities
being unknown up to date. In particular, possible masses of neutrinos
are predicted. Obtained values are 0.068¢eV, 0.095eV, 0.155eV, 0.25€V,
0.31eV, 0.39eV, 0.56eV, 1.63eV, 2.88eV, 5.7¢eV. The algorithm is explained
to some detail.
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1 Introduction

The standard theory being used for describing structure of matter on nuclear
and subatomic level is based on considerations of symmetry and was suc-
cessful in constructing a classification scheme of sub-atomic particles. This
theory, although considered as being “the best we have”, has a number of
shortcomings. It cannot be unified with general relativity and there is no
way to compute masses of elementary particles by a method based on first-
principles. Instead, masses of sub-atomic and elementary particles (as well as
other properties) have to be introduced as adaptable parameters. Although
there were attempts in the past to overcome this problem, these approaches
have not been considered in mainstream physics up to date. One of these
approaches is the unification of electromagnetism with general relativity by
the EINSTEIN-MAXWELL theory which the work of this paper is based on.
The equations and the resulting geometry were found by RAINICH [2, 3] al-
ready in 1924 and are explained in the next section. In section three, details
of the computational method for obtaining quantities of elementary particles
are discussed. The results for neutrinos are presented, and confronted with
results for nuclei and the electron in section four. While the masses of neu-
trinos could not be determined exactly up to now, we present a prediction
based on our calculations which lies within the range safely known by exper-
iment. The method works well on the basis of inherent information in the
electrovacuum around the particle.

2 The Equations

The theory is based on the relativistic tensor equations [5]

1
Rix =k (Z girFa F** — FiaFy*) (1)
Fijr + ki + Frij =0 (2)
Fiey=0 (3)

in which g;; are the components of metrics, R;; those of the RiccCI tensor
and Fj;, those of the electromagnetic field tensor. x is EINSTEIN’s gravitation
constant. If we express the field tensor by a vector potential with

Fp=A—Ar; (4)
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equation (2) is identically fulfilled. Thus, we can base our calculations on
quantities having the character of potentials that are metrics and the electro-
magnetic vector potential.

These equations are known as EINSTEIN-MAXWELL equations. The
energy-momentum tensor of electrodynamics is equated to the energy-
momentum tensor of EINSTEIN’s theory [1]. In detail, here are used the
homogeneous MAXWELL equations for force equilibrium and conservation
of energy and momentum, mathematically expressed by the BIANCHI iden-
tities. These equations describe the electrovacuum around a particle and
involve geometry described by the EINSTEIN part (equation (1)) of the equa-
tions. These equations and the involved geometry were found by RAINICH
already in the year 1924 [2, 3]. The sources of related inhomogeneous equa-
tions are replaced by integration constants [4]. Mass, spin, electric charge,
and magnetic moment are the first integration constants.

The geometric equations do not define causality, because causality is not
a geometric category. The geometric equations yield only 10 independent
equations for 14 components g;;, A;. We will consider only the diagonal
elements of g;. plus two off-diagonal elements for practical calculation, what
reduces the number of equations.

3 Numerical Simulations

Analytic solutions (different from zero) based on integration constants lead
commonly to singularities. There are two types of singularities. The first
type is singularities assumed for point masses and charges in order to sim-
plify the equations so that analytical solutions are feasible. This is often
considered as a deficit when comparing a calculation with the situation in
reality. However, in our calculations, these formal singularities are placed
into the inner of the particle (according to observer’s coordinates) which is
not subject of calculation. With spherical coordinates, the formal singularity
is at the centre.

The basic idea of calculation is as follows. The equations (1,3,4) are
evaluated on a radial grid from outer to inner and so one approaches the
unknown inner area successively. At a certain radius, the calculation starts to
diverge because the central singularity becomes predominant. It is important
to notice that this radius of divergence is clearly separated from the central
singularity so a second type of “singularity” here appears. A kind of chaos



takes effect as well, what would be matter of research.

These numerical simulations according to the EINSTEIN-M AXWELL equa-
tions show that this singularity is irrelevant, for the following reason: Nu-
merical simulations using iterative, non-integrating methods lead always to
a boundary at the conjectural particle radius. As a result, the second singu-
larity is always within a geometric limit. The area within this geometric limit
according to observer’s coordinates is not accessible to further investigation
but this is even not required. The geometric limit is the mathematical rea-
son for the existence of discrete solutions. This has also to do with chaos [4].
These discrete solutions involve discrete values of the integration constants,
i.e. eigenvalues. We shall see that the electrovacuum is able to produce such
eigenvalues.

In order to gain eigenvalues, one has to do lots of tests, because the
particle quantities are integration constants and have to be inserted into
the initial conditions (for more details see [4]), which are defined for the
electrovacuum around the particle.

As already mentioned, the basis for computations are equations (1,3,4).
For the sake of simplicity, we restrict equations (1,3,4) to time independence
and rotation symmetry. That results, with spherical coordinates

=r,22=09, =9, 2t =]t

in 6 independent equations for 8 components with potential character Az, Ay,
911, 912, 922, 933, 934, Gaa, the rest vanishes. In order to override the indetermi-
nacy by the two missing equations, we define

g12 =10 (and, consequently, g** = 0) (5)

and
g = det|g;| = r*sin®9 . (6)

These conditions are arbitrary, in which the second is taken from the free-field
Minkowski metric. They are in combination leading to reasonable results.

The integration constants from equations (1,3,4) result from a series ex-
pansion. The first coefficients of expansion are the input for the simulations
and are inserted into the initial conditions [4]. The output is the number of
grid points along the radius until divergence occurs, which is a measure for
the stability of the solution.

The first coefficients (integration constants) are



K M K M

= — = — 7
“ 4 4 0
(mass),
K S K s
=] — = — 8
2= dme dme (®)
(spin),
pot Q _ KE ot Q
=—j= — ° 9
“ ! AT AT )
(charge), and
1 1 1
o2 M 2 6,2 M
Cy = — Eo? e f2 Eo2 (10)

(magnetic moment).

As explained, these follow from a comparison of series expansion from
the EINSTEIN-MAXWELL equations (homogeneous MAXWELL equations)
with the solutions of equivalent inhomogeneous equations, see [4]. The
dimensionless terms after the arrow are taken for computation, and have
positive values. The imaginary unit is eliminated. The radius unit (r = 1)
corresponds to 107'®m. By this, the initial conditions become, using

T=1-14,

a1z, (%)*(1+cosT)
— 1+ O 11
g11 + . 2( r) 10 ; (11)
1 3
= 201+ (D)2 cos?T — 2 12
T 3
— oo Tfl + (2L _ 2 13
o C1 1 C3\2 Ciy0 . o
g = 1-— - + 5{(7) + (ﬁ) sin® T}, (14)
. 2 Co 10304
gsa = rcos”T (ﬁ - 57) ; (15)
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r
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T

The actual computation is done with quantities performed from “physical
components”, i.e. the unity summands in the equations are eliminated. This



is because the physical components of metrics have a magnitude of ca 1074°
and thus divergence is detectable at all. It is defined for example

~~ /—~ —~
—_ =
© oo
~—_ — — —

g = l+gan,

g = 1 (1+ 922)) 5

gs3 = rsin’® 9 (1+ gga3) ,
guu = 1+ guy ,

correspondingly with the CHRISTOFFEL symbols. The indices in parenthesis
mean “physical” parts of equations (11-14). So the unities vanish in the
equations before one evaluates them.

We have to insert the values of the integration constants into the modified
initial conditions (with physical components), see program in the supplemen-
tary data package (available at author’s current website®). The conversion of
physical into normalized (dimensionless) values and vice versa is described

in detail in [4, 7].

Table 1 shows some values with radius unit of 10~ °m.

These examples allow for convenient conversion.

Table 1: Physical and normalized values for conversion

physical value

norm. value

proton mass
electr. mass

h

elem. charge
KB

1.672 x 10~ g 2.48 x 1073
0.911 x 10~ 27g 1.35 x 10~42
1.054 x 10~2"cm?g/s | 5.20 x 10=4°
1.602 x 10719As 1.95 x 1072
1.165 x 1072"Vscm | 3.70 x 10719

Higher moments are missing in the equations because of lack of knowl-
edge, their influence is estimated to be rather small. In the results section
we will insert known values and values deviating from them, and compare

the results.

3http://www.bruchholz-acoustics.de/physics /neutrino_data.tar.gz



The algorithm for evaluating the equations requires numerical differenti-
ation. We do this by separating the quantity with highest radius index at
the left-hand side, and all previously evaluated quantities are at the right-
hand side. These quantities come from equations (1) and (3) using (4). For
example when we calculate spherical shells from outside to inside, the new
quantity is fy,42,. In the following difference equations f stands for any
potential-like quantity:

af fm—ln_fm-‘rln

- = : : 22
0r Tm,Tn 2 d’l“ ’ ( )
a2—f _ fm—i—Z,n - 2fm,n + fm—2,n (23>
87’2 Tm,Tn (2 d’f’)2 ’

8f fmn+1_fmn—1

e = o ’ 24
OT 'rm.Tn 2dT ’ (24)
82f fmn+1_2fmn+fmn—1
— = ™ : ol 2
OT? lrm.Tn d7T? (25)

This equation set is linearly resolvable to the new quantities in equation (23),
and the whole adherent tensor equations are non-linear. Detailed formulae
are available in the Pascal code. (The Pascal code is in the supplementary
data.) This method is made possible by the fact that 2nd derivatives in the
tensor equations appear always linearly. Therefore the doubled difference in
equation (23).

When the program runs, the values of the several components are suc-
cessively quantified in one spherical shell after the other. The computation
is done for all components along the inclination (¢ values) at a given radius,
and along the radius (with all inclination values) from outside to inside step
by step until geometric limits are reached. After starting the procedure, we
get the values as expected from the initial conditions. Suddenly, the val-
ues grow over all limits. At this point geometric limits are reached and the
calculation is stopped.

The step count (number of iterations) up to the first geometric limit of
a metrical component (where the absolute value of the “physical” component
becomes unity) depends on the inserted values of the integration constants.
A relatively coarse grid reflects strong dependencies, however, the referring
values of the integration constants are imprecise. Computations with finer
grid lead to smaller contrast of the step counts, but the values are more
precise.



The resulting eigenvalues of the integration constants are obtained where
the step count until divergence is at maximum. Round-off errors have to be
respected because these can be in the order of step count differences for the
formulae.

In order to see the eigenvalues, lots of tests were done with parameters
more and less deviating from reference values. The output parameter (used
for the plots discussed in the results section) is the mentioned step count. In
order to make visible the differences, the step count above a “threshold” is
depicted in resulting figures by a more or less fat “point”.

Though neutrinos are uncharged, one has to use always the full EINSTEIN-
MAXWELL equations to account for the inherent non-linearity. Because the
information is in the entire field outside the geometric boundary, one has to
do so even if charge and magnetic moment are zero.

4 Computational Results

4.1 Spins, Electric Charges, Magnetic Moments

Tests including parameters different from mass had to be run with an initial
radius close to the conjectural particle radius. Here, the influences of the
four relevant parameters to metrics (about 107%Y) are comparable.

The best result has been achieved with the free electron, see [4, 7]. The
magnetic moment of the electron arises specially sharply, due to the dominant
influence.

Unfortunately, the mass gets lost in the “noise” from rounding errors.
Only cases with charge and mass together can be made visible in exceptional
cases, see for example [6].

4.2 Masses
4.2.1 Masses of Nuclei

The influence of mass to metrics prevails in a certain distance from the con-
jectural particle or nucleus radius, respectively. It proves being possible to
set the remaining parameters to zero. Figs.1 and 2 show related tests, with
possible assignment of maxima in the figures to nuclei [6].

It was necessary in the tests according to Figs. 1, 2 to “pile up” the data.
For this purpose, several test series with slightly different parameters (mostly
initial radius) have been run, and the related step counts (the output) have
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been added. So the “noise” from rounding errors is successively suppressed.
With 80 bit floating point registers, the rounding error is in the 20th decimal.
As well, the relative deviation of difference quotients from related differential
quotients in the first step is roughly 1072° — that is the limit, where the onset
of chaotic behaviour can be seen. Consequently, simulations with only 64 bit
(double) lead to no meaningful results.

One can see certain patterns in the figures, which could arise from errors
by neglecting other parameters.

4.2.2 Masses of Leptons

It is principally possible to deduce the masses of all free particles, if they are
stable to some extent. Since the electron mass is relatively small, one needs an
initial radius of about 4 x 10~ m in order to be able to neglect the influence
of spin, charge, magnetic moment to some extent, see Fig.3 [7]. One step
count maximum (piled) appears fairly correctly at the experimental value,
flanked by adjoining maxima, possibly caused by the neglected parameters.

The success in detecting known masses gives good reasons for trying a pre-
diction of neutrino masses. That implies that neutrinos are stationary par-
ticles, i.e. have rest mass at all. Then they can never reach light speed.

The Particle Data Group [8] commented in the year 2002:

There is now compelling evidence that neutrinos have nonzero mass from the
observation of neutrino flavor change, both from the study of atmospheric
neutrino fluxes by SuperKamiokande, and from the combined study of so-
lar neutrino cross sections by SNO (charged and neutral currents) and Su-
perKamiokande (elastic scattering).

The neutrino has the advantage of being electromagnetically neutral. As
well, the spin does not perceptibly influence other components of metrics
than those for the spin itself. So we can unscrupulously neglect the spin, and
search for quite tiny masses.

Quoting the Particle Data Group (in 2002) again [8]:

Mass* m < 3eV.

Interpretation of tritium beta decay experiments is complicated by anomalies
near the endpoint, and the limits are not without ambiguity.

Newer experiments re-verify this ambiguity, just providing multiple mass
bounds.

4of electron neutrino



Ten plausible maxima have been found in the area for the electron neu-
trino, see Figs.4,5,6,7,8, and the supplementary data. Obtained values
are 0.068eV, 0.095¢eV, 0.155¢eV, 0.25eV, 0.31eV, 0.39eV, 0.56eV, 1.63€V,
2.88¢eV, 5.7¢eV. Smaller values (Fig.4) are less convincing.

The mentioned ambiguity gets along with the fact that multiple mass val-
ues have been detected. It could be possible that the set of values is reduced
by computation with spin. The precision with 80 bit registers is not sufficient
for such calculations. However, it could well be possible interpreting some
values as composites from smaller values. Here we could have comparable
circumstances like in nuclei so that there is no reason for the assumption
that only one value can exist. This conclusion is supported by multiple ex-
perimental mass bound values.

Many mass values are integer multiples of ~0.08 eV, within the tolerances
of the method. At the place of this value there is a hole in the figure, flanked
by maxima at 0.068eV and 0.095eV. This could be:

1) a methodical error, or

2) both values are a kind of basic values, where the other values are composite
from.

Other interpretations cannot be precluded.

5 Conclusion

It has been shown in this paper that neutrino masses can be predicted by
numerical calculations based on EINSTEIN-MAXWELL theory. The resulting
masses for electron neutrinos come out to lie in the range being known
by experiments. This is probably the first time that neutrino masses are
predicted by a theory based on first principles.
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Figure 1: Tests for nuclei with mass numbers up to 8. Initial radius 4, 400
values, 4 times piled (1600 tests)
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Figure 2: Tests for nuclei with mass numbers from 8 to 16. Initial radius 5,
400 values, 5 times piled (2000 tests)
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Figure 3: Tests for the free electron. Initial radius 400, 51 values, 9 times
piled (459 tests)
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Figure 4: Tests for the electron neutrino, masses < 0.11eV. Initial radius 5,
100 values, 9 times piled (900 tests)
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Figure 5: Tests for the electron neutrino, masses < 0.4eV. Initial radius 5,
100 values, 9 times piled (900 tests)
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Figure 6: Tests for the electron neutrino, masses < 1eV. Initial radius 5, 99
values, 9 times piled (891 tests)
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Figure 7: Tests for the electron neutrino, masses < 4eV. Initial radius 5, 99
values, 9 times piled (891 tests)
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Figure 8: Tests for the electron neutrino, masses < 11eV. Initial radius 5,
100 values, 9 times piled (900 tests)
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