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Abstract: In series of papers relative to the Combined Gravitational Action (CGA) as an alternative gravity 

theory, we have developed the CGA-formalism, which is exclusively based on a new form of velocity-dependent 

gravitational potential energy. The present paper is actually an additional exploration, exploitation and extension 

of the CGA with the main aim of showing (1) the Galilean invariance of CGA-equations; (2) that the CGA is in a 

certain manner a metric gravity theory; (3) the existence of an important similarity between the CGA and General 

Relativity Theory; (4) a new CGA-formula for perigee and perihelion precession is derived and proved to be in 

excellent agreement with observations; (5)  the CGA-effects on orbital motion inside and outside the Solar System 

are investigated; (6) the conversion rate of orbital energy into gravitational power radiation is calculated and its 

effects are studied.  
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1. Introduction 

In previous papers [1,2,3,4] we have, already, investigated the CGA-effects arising from the CGA-

formalism as an alternative gravity theory capable of predicting and explaining some old and new 

gravitational effects and allowed us to resolve ‒in its context‒ some unexpected and defiant problems 

occurred inside and outside the Solar System (SS) like, e.g., the anomalous Pioneer 10’s deceleration, the 
observed secular increase of the Astronomical Unit and the apsidal motion anomaly of the eclipsing 

binary star systems AS Camelopardalis and DI Herculis. For instance, in the paper [3], we have 

investigated the CGA-effects on the orbital motion of the planets and in the noncompact and compact 

stellar objects. In the CGA-fourth part [4], we have shown the existence of the CGA-spin-orbit coupling 

precession and applied CGA to large-scale structures and the problem of galactic rotation curves has 

been resolved. Also the Milgrom’s theory of Modified Newtonian Dynamics (MOND) [5,6,7,8] as an 

alternative model to the dark matter (DM) ‘hypothesis’ became by means of CGA [4] an additional 

support for DM! 

 

The present work is completely based on CGA-third part [3] with the primary purpose of showing, 

among other things, the invariance of CGA-equations under Galilean transformations; that the CGA is in 

certain manner a metric gravity and the existence of an important similarity between the CGA-equations 

of motion and those of General Relativity Theory (GRT). It is their additional terms that are responsible 

for the major secular effects as we will see. In paper [3], we have already calculated and listed the 

numerical values of CGA-effects on the SS’ planets (see, Tables 1 and 2 in Ref. [3]). For example, Table 

2 illustrated us the excellent agreement between planets’ observed perihelion precession and the CGA-

predictions. The same appreciation for CGA-apsidal motion in eclipsing binary star systems [3]. 
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From all that, we can say this is all the more impressive particularly when we take into account the fact 

that the Brans-Dicke and other alternative gravity theories, except GRT, containing some adjustable 

parameters that is why are called ‘adjustable gravity’, however, the CGA has no freedom to adjust its 

predictions because simply it is by its proper formalism an inadjustable gravity theory. 

 

As we can remark it from the earlier papers [1,2,3,4], the asteroids had been completely neglected that is 

why an important  part of the present work is devoted to them because more recently the author of CGA 

realized that since some major asteroids are potentially hazardous, for instance, Apollo and Icarus 

recognized to cross Earth’s orbit, for this reason, the asteroids are quite interesting celestial bodies 

because they can serve as a celestial laboratory enabling us to understand physical process that take place 

on the asteroids as well as on other similar SS-bodies and also to test more rigorously the alternative 

gravity theories. Hence, the investigation of CGA-effects on the orbital motion of asteroids is very 

important. The reader who is interested in the CGA-formalism can see Ref. [3].  

 

The real novelty of the present paper is related to the derivations of two new CGA-formulae, one for the 

perigee and perihelion precession and the other is related to the conversion rate of orbital energy into 

gravitational power radiation. To begin, it is best for the convenience of the reader, to recall briefly the 

basic foundation of the CGA-formalism. The CGA as an alternative gravity theory is fundamentally 

based on the concept of the combined gravitational potential energy (CGPE) which is typically a new 

form of velocity-dependent-GPE defined by the expression 

 

                                                                 









2

2

1
w

v

r

k
vr,UU ,                                                       (1) 

 

where GMmk  ; G  being the Newton’s gravitational constant; M and m  are the masses of the 

gravitational source  A and the moving test-body B ; 2
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is the relative 

distance between A  and B ; 222

zyx vvvv  is the velocity of the test-body B relative to the inertial 

reference frame of source A ; and w  is a specific kinematical parameter having the dimensions of a constant 

velocity defined by  
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where 0c  is the light speed in local vacuum and escv  is the escape velocity at the surface of the 

gravitational source A.  

 

The velocity-dependent-GPE (1) is simply called ‘CGPE’ because it is, in fact, a combination of the 

static-GPE 1)(  rkrV  and the dynamic-GPE 21 )/(),( wvrkvrW
 . The main difference between 

the CGPE (1) and the previously well-known velocity-dependent-PGEs is clearly situated in the 

originality and simplicity of expression (1). For instance, the originality of CGPE is reflected by the fact 

that CGPE is explicitly depending on r and v but also is implicitly depending on w since the latter is, 

by definition, a constant specific kinematical parameter. The implicit dependence of CGPE on w is 

expressed in terms of ‘inside the vicinity of A’ and ‘outside the vicinity of A’ in (2).  
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Moreover, the CGPE (1) constitutes a fundamental solution to a system of three second order PDEs, 

called ‘potential equations’ because U is a common solution to these three equations. Indeed, it is easy 

to show under some appropriate boundary conditions that the combined potential field U  is really a 

fundamental solution to the following PDEs 
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Remark, since Eqs.(3-5) are homogeneous and admit the same potential function U as a fundamental 

solution hence this implies, among other things, that the test-body B is in state of motion at the relative 

velocity, v , sufficiently far from the main gravitational source A. Furthermore, the same fundamental 

solution is the origin of the CGA-equations of motion and the CGA-field equations because, as we have 

previously seen in [2,3], the potential function U is the leading term of the CGA-Lagrangian. 

 

2. Galilean Invariance of CGA-Equations  

 

It is best to recall that the CGA as an alternative gravity theory is wholly developed in the framework of 

Galilean relativity principle and Euclidean geometry thus in view of the fact that in the Nature the major 

physical phenomena manifest at subrelativistic velocities, i.e., velocities that are sufficiently small 

compared to the light speed in local vacuum. From now, if we confine ourselves to the case where the 

velocities are subrelativistic we can prove the invariance of CGA-equations under Galilean 

transformations (GTs). With this aim, let us make use of the following shortcut: since the CGA-

formalism is basically founded on the CGPE (1), therefore, the Galilean invariance of CGA-equations 

implies the invariance of CGPE under GTs. So, supposing two inertial reference frames (IRFs) S and 

S  , which are in uniform relative motion at subrelativistic velocity u  of magnitude u . To simplify the 

algebra, let the vector velocity  u  of IRFs be along their common x │ x -axis with corresponding parallel 

planes. Also, the two origins O  and O  coincide at the moment 0 tt . The GTs that ensuring the 

passage from an IRF to another are in vector form:   
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where r and r are position vectors as observed from S and S  at any later time tt  . Since the quantities 

k and w in [1] are constant, hence the CGPE may be written in the form  
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Now, supposing there are two material points 1P  and 2P whose position vectors are, respectively,  21,rr  

relative to S  and  21,rr 
 relative to S  , and their masses 1mm   and 2mM  as observed from the two 
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IRFs S and S which is in uniform relative motion at subrelativistic velocity u  with respect to S . 

Therefore, since under GTs (6), we have 

  

                                            21121221 rrrrrr    and  21121221 vvvvvv  . 

 

Hence, we get for the CGPE (7): 

                                                                      21212121 vrvr ,U,U  .                                                         (8) 

 

This is clearly illustrating us the invariance of the CGPE under GTs. 

                                              

3. Is CGA a metric gravity theory? 

 

After having proved the Galilean invariance of CGPE, which led to the invariance of CGA-equations 

under GTs. Now, we shall try to answer affirmatively the above question in the CGA-context without 

concerning ourselves with the conceptual details because, for our theory, the metricity has only an 

heuristic importance  . To this end, let us rewrite the CGPE (1) as follows 
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 where                                           

                                                        000 ,, zzdzyydyxxdx  . 

 

Since the quantity  2/Uk has the geometrical dimensions of squared length thus, just for convenience, 

let us define it as   222
/ dtwUk   and     2422

)/()/(2/ dswvwvUk  , so  after substitution into (10), 

we get 

                                                                           
222222
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The expression of the quadratic form or equally the space-time interval (11) allows us to say that, in 

certain sense, the test-body may be gravitationally evolved in flat space-time, called here, CGA-space-

time. Let us prove the invariance of (11) under some spatio-temporal transformations more general than 

GTs. With this aim, considering again two IRFs S and S  , which are in uniform relative motion at  

velocity xueu  such that wu  . Also, the two origins O  and O  coincide at the moment 0 tt . The 

two IRFs S and S  are linked by the following spatio-temporal transformations given in differential form 

as follows: 
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Remark, by using (12), we obtain the following invariance 
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This means, among other things, that the CGA is –in a certain manner– a metric gravity theory. In 

passing, and without going into detail about the process of derivation of (12), it is easy to prove that 

these transformations form an orthogonal-orthochronous group. Also, the same transformations may be 

reduced to Lorentz transformations for the case when 0cw  . Finally, the reader can observe that the 

classical (Galilean) notion of absolute time –second equation in (6)– agreeing for all the IRFs is not 

always valid because the fourth-equation in (12) may be reduced to tt   only if the ratio )/( wu is 

sufficiently small than unity. 

 

4. Some similarity between CGA and GRT 

 

In the CGA-second part [2], we have derived Eq.(30), which is the general equation of motion in the 

combined gravitational field and from it, we have derived Eq.(32): 
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which has the exact form derived under GRT. Further, Eq.(14) allows us ,of course, to study the 

perihelion advance of Mercury and other planets, and the angular deflection of light in the combined 

gravitational field [2]. In the CGA-third part [3], we have derived from the CGA-Lagrangian, the CGA-

equations of motion in compact form, i.e., Eqs.(10) in Ref.[3]: 
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where   is the Newtonian gravitational potential defined by 

 

                                                                         
r

GM
r  ,                                                            (16) 

 

Now, considering the case when the test-body B  evolving in the vicinity of the gravitational source A, 

hence according to (2), Eqs.(15) become 
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Moreover, if the quantity  rcGM
2

0/2  is sufficiently small in comparison to unity, therefore, Eqs.(17) 

may be written in the form 
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We can see that the first term on the right-hand side of Eq.(18) is the well-known Newtonian 

gravitational acceleration. The remaining terms are the CGA-correction which, in part, gives rise to the 

CGA-effects like, e.g., the orbital precession (perigee, perihelion and periastron precession) as we will 

see later. Further, many authors in the field of relativistic gravitational physics have derived –in the 

context of the post-Newtonian approximation– certain equations of motion similar to Eq.(18). Among 

them, we can, e.g., choice from Ref.[5] the following equation: 
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Where Sm  is the Sun's mass. 

 

Question: why shall CGA arrive at the same results as GRT? 

 

Response: because if we take the concept of the curvature of space-time apart, we find that contrary to 

the Newton’s theory of gravitation, CGA and GRT take, at the same time, in full consideration the 

relative motion of the test-body and the light speed in local vacuum which in CGA is playing the role of 

a specific kinematical parameter of normalization and in GRT is supposed to be the speed of gravity 

propagation. As it was previously mentioned in [3], the principal result of CGA-formalism [1,2,3,4] is 

the existence of the dynamic gravitational (acceleration) field (DGF),Λ , derived from Eq.(28) of Ref. 

[3] under the form 
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The DGF is actually an induced field, it is more precisely a sort of gravitational induction due to the 

relative motion of material test-body in the vicinity of the gravitational source. Certainly, the static 

gravitational field 

                                                                            rγ ,                                                                 (21) 
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is generally always stronger than DGF but Λ  has its proper role and effects. For example, as an 

additional field, Λ  is responsible for the perihelion advance of Mercury and other planets [1,2,3]. In his 

1912 argument [6], Einstein himself noted that the inertia of energy and the equality of inertial and 

gravitational mass lead us to expect that “gravitation acts more strongly on a moving body than on the 
same body in case it is at rest.” It seems Einstein’s remark reflects very well the expression of the 

combined gravitational field [1,2,3] 

                                                                            Λγg  .                                                                   (22) 

 

It is clear from (22), that the combined gravitational field, g , may be reduced to the static gravitational 

field, γ , only for the case 0Λ , that is, when the material test-body under the action of field is at the 

relative rest with respect to the main gravitational source. Moreover, as we know from [2,3], the 

combined gravitational field is derived from the CGPE (1). 

 

Concerning the second result of CGA, namely, the dynamic gravitational force DF  is defined as the 

product of mass m  of the moving test-body B  and Λ , that is  

 

                                                                             ΛF mD .                                                                   (23) 

 

Curiously, Lorentz has already arrived at some conclusion very comparable to that of Einstein, but more 

than one decade before him. In his very influential work [7] entitled ‘Considerations on Gravitation’ 
published in 1900, Lorentz wrote “Every theory of gravitation has to deal with the problem of the 
influence, exerted on this force by the motion of the heavenly bodies.” To my great surprise, when I read 

the Lorentz article [7] for the first time, that is, after having written the CGA, I found, among other 

interesting things, that Lorentz had arrived at an extra-gravitational force (Eqs.(24) in Ref.[7]) whose 

components are very similar to those of DF . Again, Lorentz claim and finding reinforcing the fact that 

the couple  D,FΛ  is really induced by the relative motion of massive test-body B in the gravitational 

field of central body A. Also, Broginsky, Caves and Thorn, in their seminal paper [8] entitled 

‘Laboratory experiments to test relativistic gravity’ published in 1977, they found an extra-gravitational 

acceleration called by them post-Newtonian gravitational acceleration (Eq.(2.1) in Ref.[8]) whose 

magnitude is also comparable to that of Λ . 

 

5. Effects of  D,FΛ  on orbital motion  

 

Now, we arrive at the heart of our subject, viz., the CGA-effects on orbital motion . As we knew from the 

papers [1,2,3,4], the CGA-effects consist of average change in orbital period, orbital velocity, radial 

distance, and secular perigee precession of satellites, secular perihelion precession of planets, angular 

deflection of light, secular apsidal motion in eclipsing binary star systems, periastron advance  of pulsars 

and CGA-spin-orbit precession. All these CGA-effects are raised from the couple  D,FΛ . 

 

In order to familiarize the reader with the CGA-effects, it is best to start by showing that CGA-effects 

are in fact contained in Eq.(18), i.e., the terms in the right-hand side of (18). Let us prove the above 

affirmation, namely, the CGA-corrections to the Newtonian equations of motion are of the form of 

Eq.(18) by comparing this equation with Newton’s one 
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Hence, simple comparison with Eq.(18) shows us that if we apply Eq.(24) instead of Eq.(18) to, e.g., the 

Earth’s orbital motion, we should have apparently, correct result, which is partly due to the fact that the 

Earth’s orbital velocity is too slow compared to the light speed and the Sun’s gravitational field is so 
weak compared to that of, e.g., neutron star or pulsar. However, in terms of accuracy, the omitted terms 

on the right-hand side of Eq.(18) would still contribute at least on average by an important amount. Thus, 

if we take into account these neglected terms, we get the CGA-correction to the Earth’s semi-major axis 

a  by an amount of 
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In Eq.(25), we have used SmM   instead of ES mmM   because the mass-ratio, SE mmq  , of the 

system {Sun, Earth} is comparable to zero. The above illustrative example shines a spotlight on the 

CGA-formalism and pushes us to draw attention of the astronomy community to scrutinize the CGA in 

order to assess its role and importance as an alternative gravity theory.  

 

Returning again to our main subject and demonstrating the effects of couple  D,FΛ on the orbital motion 

of a material test-body. Firstly, we begin by showing that the orbital eccentricity depends, in part, on the 

average magnitude of the dynamic gravitational force, DF , and secondly we should prove that the 

perigee (if the test-body is a satellite), the perihelion (if the test-body is a planet) and periastron (if the 

test-body is a star) of any moving material test-body, in combined gravitational field (22), should 

exclusively depend on the average magnitude of the dynamic gravitational field Λ . 

 

5.1. Effect of DF on orbital eccentricity 

 

Let us demonstrate that the orbital eccentricity, e, is partly depending on the magnitude of the dynamic 

gravitational force DF . To this end, suppose the material test-body B of mass m  orbiting the 

gravitational source A of mass M  at the mean radial distance meanr with mean orbital velocity 

1

meanorb π2  Prv , where P  is the mean orbital period. Since the test-body B moving inside the vicinity 

of the gravitational source  A, this allows us to use the definition (2) and Eqs.(20). Thus, the magnitude 

of the dynamic gravitational field Λ  ‒when it plays the role of an extra-gravitational acceleration‒ 
should be of the form 
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Further, we have the following well-known relation 
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and  
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with minmax rrδr  . Therefore, by multiplying the two sides of (29) by the mass, m , of the moving test-

body B, we find 

                                                      

2

22

0

2

D

πΛ 









re

δr
Pc

k
mF ,   GMmk                                                 (30) 

 

Finally, from (30), we get the very expected equation that expresses the dependence of  e  on DF  

 

                                                                  
D0

π
F

k

r

δr
Pc

e 







 .                                                            (31) 

 

Eq.(31) shows us more clearly the following possible cases: 

i) The orbital eccentricity, e, should always be different from zero, that is, 00  δre , therefore, the 

orbit is not circular and as a direct result we have: 

 

                                                             












hyperbolaaisorbitthe,1>

parabola aisorbitthe,1

ellipseanisorbitthe,1

0

e

e

e

e . 

 

ii) Eq.(31) is exclusively valid  for the case 1e . 

iii) The orbital eccentricity is extremely high if, in terms of average magnitude, DF is extremely weak. 

iv) The orbital eccentricity is extremely low if, in terms of average magnitude, DF is extremely strong. 

 

5.2. Effect of Λ  on orbital precession 

 

As previously reported, we have already derived from Eq.(32) of Ref.[2], the formula (32.10): 

 

                                                               22

0 1

π6

eac

GM


       (rad/rev),                                                  (32) 

 

for orbital precession, which is identical to that derived from GRT. Presently, our purpose is to show the 

exclusive dependence of orbital precession on the average magnitude of dynamic gravitational field Λ . 

With this aim, we must use (32) only as a target that should be explicitly deduced from (29) combined 

with the well-known equation of ellipse in polar coordinates 
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 

cos1

1 2

e

ea
r




 ,                                                                (33) 

 

All that should be done via some simple algebraic calculations as we will see immediately. So let us 

rewrite (29) as follows 

                                                         
2

22

2

0 π24

π6Λ
e

δr
cr

GM
r


 ,   P/π2 .                                             (34) 

 

Or by substituting (33) in the right-hand side of (34), we get 

 

                                                          
 

  2

22

2

0

2 π24

π6

1

cos1Λ
e

δr
cea

GMe
r







 .                                               (35) 

 

And from (35) we deduce immediately the formula (32): 

 

                                                            22

0

22

2

1

π6π24

cos1

Λ
eac

GM

δr
e

e

r




 
.                                                (36) 

Or equivalently 

                                                                  2

22

π
Λ

cos1

6

δr
P

e

re






 .                                                        (37) 

Further, we have from (33)  

                                                                   
 

r

ea
e-

21
cos1


 .                                                            (38) 

Thus, substituting (38) into (37) yields                                           

                                                                Λ
1π

6
2

2

2

22














δr
r

ea

Pe .                                                      (39) 

 

Remark: since meanminmax 2 rerrδr  , therefore, (39) becomes for the case meanrr    

 

                                                                   Λ
12π

3
2

2












ea

P .                                                            (40) 

 

Expression (40) is exactly the very expected formula that shows us the dependence of   on Λ . 

Moreover, in view of the fact that the perihelion advance by   per revolution, thus in this case the 

resultant equation for the elliptical orbit should be 

 

                                                                   
 
  



cos1

1 2

e

ea
r  .                                                         (41) 

 

Eq.(41) may be regarded as a generalization of (33) when the test-body evolving in the combined 

gravitational field (22). Concerning Λ  in (40), is naturally defined by the expression 
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2

0

1Λ 









ac

GM

a
,                                                                 (42) 

 

since the mean orbital velocity orbv  of test-body may be also expressed by aGMv /orb   for 

arr  mean . Furthermore, formula (40) means Λ  and the term in bracket is the coefficient of 

proportionality, which has the physical dimensions of inverse of the average magnitude of acceleration. 

 

Clarification: It is worthwhile to note that when we have derived the formulae (40) and (41), the mass of 

orbiting test-body B ( Bmm  ) was implicitly supposed to be small than that of gravitational source A 

( AmM  ), i.e., the mass-ratio, AB mmq / , of system {A, B} is comparable to zero and also the relative 

distance between A and B is assumed to be sufficiently large. However, if q is not sufficiently 

comparable to zero and the separation is not enough large, in such a case, we should take BA mmM   

as a total mass of system {A, B}. All that may be summarized below as follows:  

 

                                                           







0>if,1

0if,

qqm

qm
M

A

A
,  AB mmq  .                                             (43) 

 

Before, investigating the CGA-effects on orbital motion of major asteroids, it is judged best to 

familiarize the reader with the process of computation when we would apply the CGA-formalism. To 

this pedagogical purpose, we have selected the Moon and asteroid Ceres to study the CGA-effects on the 

orbital motion of these two important celestial bodies. 

 

CGA-effects on orbital motion of Moon: In the system {Earth, Moon}, the Earth playing the role of 

principal gravitational source  A  and the Moon has the role of test-body B.  We have, according to [3], 

the following orbital and physical parameters of Moon:  

0549.0e , m10844.3 8a , s102.360580d32.27 6P , kg103477.7 22Bm . For the values of 

the Earth’s mass and of the physical constants, we take kg109722.5 24Am , 

21311 skgm1067384.6 --
G

 , 1

0 sm458792299 c , the mass-ratio: 0123.0/  AB mmq . As we can 

remark, q is not sufficiently compared to zero, thus according to (43), we must take the total mass 

BA mmM   for the average magnitude of dynamic gravitational field, we find, after substituting all the 

above parameters into (42):  

                                                                -214 sm10188927.3Λ  .                                                      (44) 

 

Hence, in terms of field, the Earth ‒as the main gravitational source in the system {Earth, Moon}‒ exerts 

on the Moon as a test-body un extra-gravitational field Λ  of average magnitude (44). Or according to 

(23), the Earth exerts on the Moon an extra-gravitational force DF of average magnitude  

 

                                                                   N102.343127 9

D F .                                                        (45) 

 

CGA-secular perigee precession of Moon: In paper [3], we have already investigated the CGA-secular 

perigee precession of Moon by using the formula (47) in [3] and we obtained a value in good agreement 

with sec/cyarc0.060  found by De Sitter [9,10,11] who used GRT and some inaccurate data available at 
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that time (1916). However, if we employ GTR-formula which is identical to (32) and the modern 

accurate data, we find sec/cyarc0.060889GRT  . The correct computation of the secular perigee 

precession of Moon should be seen as a fact of an extreme significance particularly for alternative 

gravity theories. In what follows we perform the calculation with the help of CGA-formula (40). Hence, 

by inserting the orbital and physical parameters into (40), we obtain 

 

                         
arcsec/cy061043.0

32.27

36525
3600

π
180

10136162.2

rad/rev10136162.2Δ

10

10

CGA














   .                   (46) 

 

This is in good agreement with the above GRT-prediction.  

 

CGA-effects on orbital motion of asteroid Ceres: Ceres is the largest and first discovered asteroid, by 

Italian astronomer Piazzi on January 1, 1801. The following orbital and physical parameters are from 

NASA (nssde.gsfc.nasa.gov/planetary/factsheet/asteriodfact.html): 

0549.0e , AU767.2a , m10597870.149AU1 9 , yr4.60P , d25.365yr1  , kg107.8 17

C m . 

For the Sun’s mass, we have kg109891.1 30

S m  and for the mass-ratio, we have 

13

SC 10373837.4/  mmq  . Since 0q , thus according to (43), we find, after inserting the orbital 

and physical parameters into (42):  

                                                                -212 sm10764520.2Λ  .                                                      (47) 

 

This means that the Sun as a principal gravitational source exerts on Ceres, during its orbital motion, an 

extra-gravitational field Λ  of average magnitude (47). Or according to (23), the Sun exerts on Ceres an 

extra-gravitational force DF of average magnitude  

 

                                                                   N102.405132 6

D F .                                                         (48) 

 

CGA-secular perihelion precession of Ceres: In addition to the importance of secular perigee precession 

of Moon, the investigation of Ceres’ secular perihelion precession is by itself a significant test-case for 

alternative theories of gravity. For example, the GRT-secular perihelion precession is 

sec/cyarc0.0303484GRT  . This GRT-prediction should be, of course, compared with CGA-

prediction in order to be sure of CGA-formalism. So, by substituting the orbital and physical parameters 

into (40), we obtain 

                                                               arcsec/cy303200.0Δ CGA  .                                                   (49) 

 

This is in excellent accord with GRT-prediction. 

 

5.3. CGA-effects on orbital motion of four major asteroids  

 

In order to assess more rigorously the theoretical predictions of CGA-formalism, we have selected from 

JPL small body database (http://ssd.jpl.nasa.gov/sbdb.cgi) and from (nssdc.gsfc.nasa.gov/planetary/ 

factsheet/asteroidfact.html) four major asteroids. Their masses are extremely small with respect to that of 

the Sun. this characteristic allows us to follow exactly the same process of computation applied to Ceres. 
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The orbital and physical parameters are listed in Table 1 and the observed perihelion precession of each 

asteroid and CGA-effects are listed in Table 2. 

 

                                                                                  

                                                 ASTEROID                               a                                    e                            P                      m                                                                                        

                                                                      (AU)                                            (yr)                     (kg)                                                                

          

               

                             1862 Apollo             1.470110           0.55993           1.785             2.00
12

10  
          

        
             

               

                                2101 Adonis               1.874470             0.76381            2.570               1.80
12

10               
    

                                       

                                433 Eros                     1.457970             0.22263            1.760               6.69
15

10                               

                                1566 Icarus                1.077903             0.82683            1.119               1.00 
12

10                                       

                  

                               

                                               Table 1: The orbital and physical parameters of four major asteroids. 

 

Using the data listed in Table 1 and the CGA-formalism, we get the CGA-predictions which are listed in 

Table 2 with the observed secular perihelion precession of each asteroid. 

 

 
                                                                                                                                Predicted CGA-effects 

 

             Asteroid                    obsΔ                      Λ                           DF                     CGAΔ  

                                                               (arcsec/cy)               (
-2sm )                     (N)                   (arcsec/cy) 

 

                           1862 Apollo             2.1239           1.842055
-11

10       36.8411                2.144459
         

        
             

               

                             2101 Adonis               1.9079             8.892244
-12

10        16.0000                  1.918676              
    

                                   

                             433 Eros                     1.6000             1.889735
-11

10        1.26423
5

10          1.573589                          

                             1566 Icarus                 10.007            4.676354
-11

10         46.76354                10.05435                      

 

         
                       Table 2: The observed secular perihelion precession of each asteroid and the predicted CGA-effects. 

 

Table 2 illustrates us more conclusively that in addition to the average magnitude of couple  D,FΛ , the 

predicted CGA-secular perihelion precession CGAΔ of each asteroid is in excellent agreement with the 

observed value obsΔ . 

 

The reader, who is already familiarized with CGA-formalism, has the natural right to ask about the status 

of the CGA vis-à-vis the scientific community. Certainly, the CGA as an alternative gravity theory could 

be regarded as a generalization of the Newton’s theory of gravitation as we have previously seen in [3]. 
The CGA is in fact a newborn gravitational model (formulated in 2009) compared to the old ones. 

However, if the CGA is capable of predicting and explaining some old and new gravitational effects 

[1,2,3,4] this is due to the originality, simplicity and coherence of its formalism, which has no  adjustable 
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parameters. The well-informed reader can judge CGA in its own context. Historically, GRT succeeded in 

providing a numerical value for perihelion precession of Mercury [12] and attributed this additional 

rotation of the line of apsides to the space-time that curves around the Sun. However, as it was 

demonstrated in [3], CGA has predicted and explained the same effect in the framework of Euclidean 

geometry and Galilean relativity principle.  We have already shown in the present paper that the CGA-

effects are mainly due to the couple  D,FΛ . Again, in order to convince more conclusively the reader of 

the excellent agreement between the CGA-predictions and observations let us investigate the perihelion 

precession of the inner planets by using the newly derived formula (40). The average magnitude of the 

couple  D,FΛ has been previously calculated (see, e.g., Table1in Ref.[3]). 

 

5.4. CGA-secular perihelion precession of inner planets 

 

In Table 3, are listed the orbital and physical parameters of each inner planet. Some data are adopted  

from [3]. 

 

                                                       PLANET                          a                            e                    P                                                                                                                  

                                                                    m                                            yr                                                                                

                 

                                       Mercury        57.92109         0.2056             0.241                                                                                 

   

                                       Venus          108.25109         0.0068                  0.615                           

           

                                           Earth             149.60109           0.0167                1.000                                 

                         

                                           Mars              227.95109          0.0934                1.881               

   

                                                                           Table 3: The orbital and physical parameters of inner planets. 

 

With the help of the data listed in Table 3 and the newly derived formula (40), we get the CGA-

predictions CGAΔ displayed in Table 4 with the observed secular perihelion precession obsΔ  of each 

inner planet. 

 

                                                  PLANET                                  obsΔ                                CGAΔ                                                                                                                        

                                                                    (arcsec/cy)                arcsec/cy                                                                                    

                 

                                     Mercury                  43.1000                 43.042580                                                                     

   

                                     Venus                         8.0000                            8.622262           

           

                                                                  Earth                             5.0000                       3.844435               

                             

                                                                  Mars                              1.3624                       1.352923 

   

          Table 4: The observed secular perihelion precession and CGA-prediction for each inner planet are listed for comparison. 
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 Like before, from Table 4, the reader can easily observe the good agreement between CGA-theoretical 

predictions and observations. Since GRT has already arrived at the same results, thus it is necessary to 

say a few words about CGA and GRT. In the CGA-context, the secular perigee precession of Moon and 

secular perihelion precession of planets and asteroids as, extra-gravitational effects, are originally caused 

by the action of couple  D,FΛ , however, in the GRT-context, the above mentioned secular effects are 

causally attributed to the curvature of space-time around the Sun. Concerning CGA, the reader can return 

to Eqs.(31) and (40) to see the dependence of orbital eccentricity e on the average magnitude of DF , and 

the dependence of perigee and/or perihelion precession Δ  on the average magnitude of Λ . 

Remembering the discussion in connection with certain similarity between CGA and GRT, particularly 

Eqs.(18) and (19) containing CGA-effects and GRT-effects, respectively. 

 

5.5. CGA-effects on orbital motion of binary pulsars  

 

Before the advent of the CGA, it was usually claimed that the study of compact stellar objects like, e.g., 

neutron stars and pulsars is exclusively belonging to GRT-domain because their strong compactness is 

enough to bend the local space-time in such a way that some observable GRT-effects should occur. 

However, this claim has already been refuted in [3]. Once again, we consider the reader as an intellectual 

witness in order to focus his attention on the fact that the CGA is very capable of investigating its proper 

effects, even, in compact stellar objects. More precisely, we will see that in addition to the 

couple  D,FΛ , there is another important effect, namely, the CGA-apsidal motion in binary pulsar 

systems which, in reality, has been studied earlier in [3]. This effect is very similar to perihelion 

precession and consequently should be defined by the same newly derived formula (40). Indeed, if we 

take the usual notation for the apsidal motion rate ω  instead of Δ , we obtain 

 

                                                               Λ
12π

3
2

2












ea

Pω .                                                                 (50) 

 

The high compactness of pulsars implies that the resulting gravitational fields near the pulsar’ surface is 
large, thus enabling strong-field tests of alternative gravity theories. Further, pulsars and their orbiting 

companions are generally compact enough that their motion can be treated as that of two point-masses. 

Therefore, in the CGA-context, we can logically consider each pulsar as the main gravitational source 

and the companion as the test-body. Consequently, the causal source of CGA-effects in the binary pulsar 

systems is exactly of the same nature as for ordinary (noncompact) eclipsing binary star systems [2,3,4].  

 

Hence, the combined gravitational field (22) becomes stronger as the pulsar and its companion are so 

close together that an ordinary star like the Sun could not fit in their orbits. As a direct result, the couple 

 D,FΛ  should have its intensity amplified drastically. That is why, e.g., the value of CGA-apsidal 

motion rate of binary pulsar systems should more significantly than that of ordinary eclipsing binary star 

systems. Exactly like previous investigation [3], i.e., the determination of GCA-effects in binary pulsars 

should show us, among other things, that the usual GRT-interpretation of gravity as a deformation of 

space-time is not a physical reality but a pure topological property of Riemann geometry which is 

conceptually non-Euclidian. 
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We have displayed in Table 5 the orbital and physical parameters of each binary pulsar. The Sun’s mean 
radius  km695508S R  and mass  kg109891.1 30

S m  are used as units for each binary pulsar’s 
semi-major axis and mass.   

 

                                                                                  

                                          PULSAR                                         P                e               
S/R a          

S/ mmA
         

S/ mmB
            REF.                                                        

                                                                     d                                                                               
          

                        PSR B 1913+16          0.322997      0.6171        2.803849        1.4414
             

1.3867   
             

a  
             

               

                          PRS B 1534+12            0.420              0.2740         3.280619          1.3400          1.3400              b
  
                                      

                          PSR J 0737-3039          0.102251        0.0877        1.265262          1.3380          1.2490              c                               

   

                                      Table 5: The orbital and physical parameters of each pulsar and its companion  

                                       Ref.: a) Weisberg and Taylor [12]; b) Nice et al., [13]; c) Kramer et al.,[14] 

 

Since the mass-ratio, AB mmq / , of  each binary pulsar is of the order of unity, thus according  to  (43), 

we can take  BA mmM   as a total mass of system for the average magnitude of Λ  and also for CGA-

apsidal motion rate CGAω . So, with the aid of Table 5, we have calculated and displayed in Table 6 the 

CGA-effects with the observed apsidal motion rate obsω  of each binary pulsar. 

 

 
                                                                                                                       Predicted CGA-effects 

 

                                        PULSAR                                        obsω                      CGAω                 Λ                                         DF                                                                  

                                                                  deg/yr                   (deg/yr)               (
-2sm )                       (N)                

          

                        PSR B 1913+16           4.226595            4.223614       2.114670
-4

10         5.832862
26

10           
   

                
               

                          PRS B 1534+12             1.756                     1.760              1.185548
-4

10          3.159952
26

10                                          

                          PSR J 0737-3039          16.900                   16.83559        1.925609
-3

10           4.783955
27

10                                    

   

                                       Table 6: Observed apsidal motion rate and predicted values of CGA-effects.  

 

As the reader can remark it easily, in addition to the other CGA-effects, Table 6 reveals us the excellent 

agreement between CGA-apsidal motion rate and the observed one for each binary pulsar. 

 

6. Conversion Rate of Orbital Energy into Gravitational Power Radiation 

 

In the GRT-context, the orbital energy loss is supposed to be due to the gravitational radiation, i.e., 

gravitational waves of bounded binary systems. Firstly, in the CGA-context, we prefer using the term 

conversion as a replacement for the word loss because, causally, the CGA attributing the mechanism of 

the conversion –of orbital energy into gravitational power radiation– to the variation of work done by the 

dynamic gravitational force DF during the orbital motion of binary system {A, B} for the reason that 

DF should play a double role: an extra-gravitational force and a perturbation force. 
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Explanation: Since the (relative) orbit of the main gravitational source  A of mass 
Am  and the test-body 

B of mass 
Bm  is elliptical, more precisely, the binary system {A, B} may contain either a single elliptical 

orbit or each body would travel in its own separate elliptical orbit as is illustrated in Figure 1 below. 
 

    
  

                                                        A                       

                                                                       

                                                                      

   

                                          

                                                                                             B  

             

                

                          Figure 1: The orbit of the hypothetical binary star system {A, B}. 

Thus the two stars are closer together at some times than at others, so that the couple  D,FΛ  alternately 

strengthens at periastron and weakens at apastron. Hence, dynamically, there is a certain amount of work 

Wδ performed by DF and is defined like this  

                                                                                sF δδW  D ,                                                           (51)    

where sδ  is a displacement vector.  

 

Or equivalently, we can rewrite (51) as follows 

 

                                                     cosD δsFδW  ,                                                       (52) 

 

where   is the angle between the force vector and displacement vector and 

 

                                                

2

0

D 









ac

GM

a

μ
F , 1 Mmmμ BA , BA mmM  .                                    (53)  

 

The presence of the reduced mass μ  is quite natural since we are dealing with binary system consists of 

two bodies rotating about their common center of mass (Fig.1). Now, supposing that the Kepler's third 

law  GMrP /π4/ 232   is enough accurate to be applied here. Thus, according to the above 

considerations, Wδ  should have its maximum value at periastron minrr   and its minimum value at 

apastron maxrr  . Inversely, at periastron the orbital period should be minPP  and at apastron 

maxPP  . By taking into account the fact that DF as a perturbation force will cause a change in the work 

δW during the time interval minmax PPPδ  . Therefore, the rate of change in Wδ is called, in the CGA-

context, average gravitational power and is given by  
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Pδ
Wδ

E .                                                                    (54) 

 

Because δs should be infinitesimal compared to the relative separation between  A and B, hence for our 

purpose it is best to take  G4

3
rδs  where 2

0G /cGMr   is the gravitational radius of system {A, B}. Thus 

for the case  0 ,  Eq.(52) becomes δsFδW  D  and consequently Eq.(54) takes the form 

 

                                                            
Pδ

r

ac

GM

aPδ
δs

F G

2

0

D
4

3











E .                                                      (55) 

 

Let us focus our attention on the orbital period. we have from Kepler's third law: 

  

  
GM

r
rrP

3/2

min
minmin

π2
    and    

GM

r
rrP

3/2

max
maxmax

2π
 . 

 

Since we are dealing with elliptical orbit, hence, we have  ear  1max  and  ear  1min , and δP  

takes the form   

                                               33
2/3

minmax 11
π2

ee
GM

a
PPPδ  .                                               (56) 

 

By substituting (56) into (55), and performing some algebraic calculation, we get 

 

                                                         
  4

0π8

3










ac

GM

GMa

ef 
E ,                                                           (57) 

with 

                                                                133
11


 eeef .                                                             (58) 

 

Because of the principle of conservation of energy, the average gravitational power E  should be equal 

to the change in the total orbital energy E  of system under consideration, i.e., we should have        

                                                                            

                                                                        E E .                                                                            (59)  

In view of the fact that the average orbital velocity is aGMv /orb   ,hence, according to (57) the 

change in orbital energy is of the order  40orb / cv . As we can remark it, Eq.(57) defines us the average 

rate of gravitational emission energy from system {A, B}. This average rate E  has the physical 

dimensions of power thus its units are -1sJ  or Watt . In the CGA-context, we call E  gravitational 

power. Also, E  is strictly positive, this fact is not new because the natural sign of power ‒in 
electricity and in mechanics‒ is always positive . Moreover, Peters and Mathews have, in their very 

interesting work [15], derived a formula for average rate at which the system radiate energy. This rate 
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is also strictly positive. In [15], their formula is numbered (16) and located on page 437, first column. 

Here, we rewrite it exactly in its original form as follows: 

 

                                            
 

  





 




 42

2/725

21
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2

2
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5

4

96
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1

15

32
ee

ea

mmmm

c

G
p . 

 

Thus, originally, Peters and Mathews derived a formula with strictly positive sign and used p  as an 

average power. Also, many authors confounded the Peters-Mathews' notation p  with the orbital 

period of system and that's why they took the first time derivative of period equals to the expression on 

the right-hand side of the above formula. 

 

6.1. Consequences of Gravitational Power Radiation 

 

Five consequences may be occurred from the gravitational power radiation, namely, (1) a decrease in 

the orbital period: The progressive conversion of orbital energy of the binary system {A, B} into 

gravitational power radiation causes a gradual decay of orbital period; (2) a decrease in the orbital 

separation: Exactly like the case (1), i.e., the conversion of orbital energy leads to a decrease in the 

orbital separation between A and B; (3) change in the orbital eccentricity; (4) change in the orbital 

angular momentum; (5) gravitational coalescence: Because of the conversion of orbital energy, the 

orbits are gradually shrinking and the coalescence should be imminent at least in the long term. 

 

It is worthwhile to note that in the framework of Newton's gravity theory these orbital parameters are 

constant of motion. However, in the CGA-context they will be functions of time which will be 

gradually varying. 

 

6.1.2. Orbital period decay rate 

 

The parameters a , P  and e  are related, respectively, to the total orbital energy E , Kepler's third law 

and orbital angular momentum through the following equations: 

 

                                                                      
a

mmG
E BA

2
 ,                                                              (60) 

 

                                                           
GMa

P
2

3

2 4π
 ,                                                                 (61)      

 

                                                               22 1 eammG BA   .                                                         (62)          

By combining (60) and (61) via differentiation with respect to time, and by taking into account (59), 

we get ‒after substitution and some algebraic calculation‒ the following expression for the orbital 
period decay: 

                                                                   ef
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GM
P

2

2

04

9








 .                                                            (63) 

 

 



20 

 

6.1.3. Semi-major axis decay rate 

 

By following, exactly, the above process, we obtain an expression for the semi-major axis decay rate: 

 

                                                                 ef
a

GM

cπ
a

5/2

4

04

3




 ,                                                      (64) 

or  equivalently 

                                                                      ef
P

a
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GM
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2

02

3








 .                                                        (65) 

 

6.1.4. Secular change in the orbital eccentricity 

 

To calculate the rate of secular change in the orbital eccentricity, we must differentiate Eq.(56) with 

respect to time and with the help of Eq.(64), we find 

 

                                                                    
 

 27/24

0

5/2

116

3

eacπ
GM

e


 .                                                       (66) 

 

6.1.5. Secular change in the orbital angular momentum 

 

By differentiating Eq.(62) with respect to time, we get 

 

                                                                 
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e

e
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
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Substituting (64) and (66) into (67), yields the following expected expression 

 

                                                          
      egef

acπ
GM

 2
16

3
7/24

0

5/2


 ,                                                     (68) 

where  

                                              133
11


 eeef    and       141


 eeeg  

                       

 

6.1.6. Gravitational coalescence mean-time 

 

In the CGA-context, the gravitational coalescence mean-time is the mean-lifetime of binary system's 

orbit. We can derive an expression for the gravitational coalescence mean-time by integrating Eq.(64), 

and we obtain ‒after omitting the integration constant‒ the following equation: 
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 

 ef
GM

acπ
t

1

5/2

7/24

0
GC

21

8  .                                                  (69) 

 

Eq.(69) is called "gravitational coalescence mean-time" because it only predicts the mean-time for the 

radius of the orbit to shrink considerably before reaching zero, i.e., total coalescence. This 

consideration is based on the fact that during the process of integration of Eq.(69), we have 

intentionally omitted the constant of integration. Moreover, if we take into account the fact that, in the 

long term, the orbital velocity will become a significant fraction of the light speed and as a direct 

result, Eq.(69) may be interpreted as an estimation of gravitational coalescence mean-time .  

 

7. Conclusion   

 

Based solely on the CGA-formalism, we have demonstrated the causal dependence of orbital eccentricity 

on the average magnitude of dynamic gravitational force, also a new formula for the secular perigee and 

perihelion precession had been derived. This formula is proved to be exclusively depended on the 

average magnitude of dynamic gravitational field and is successfully applied inside and outside the Solar 

System. Furthermore, it is found that the CGA-predictions are, at the same time, in excellent agreement 

with observations and GRT-predictions. The last fact is mainly due to the existence of certain similarity 

between the approximate GRT-equations of motion and CGA-ones. Finally, the conversion rate of 

orbital energy into gravitational power radiation is calculated and its effects are studied.  
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	Asteroid                                                                                                                                                                                                  ...
	1862 Apollo             1.470110           0.55993           1.785             2.00
	1862 Apollo             2.1239           1.842055      36.8411                2.144459

	Planet                                                                                                                                                                                              ...
	Mercury        57.92(109         0.2056             0.241
	Venus          108.25(109         0.0068                  0.615

	Planet                                                                                                                                                                                                   ...
	Mercury                  43.1000                 43.042580
	Venus                         8.0000                            8.622262

	Pulsar                                                                                                    Ref.
	PSR B 1913+16          0.322997      0.6171        2.803849        1.4414             1.3867                a

	Pulsar
	PSR B 1913+16           4.226595            4.223614       2.114670        5.832862


