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1 Introduction

Theory of spontaneous symmetry breaking is one of the important results
in modern theoretical physics, and it is expressed by the Nambu-Goldstone
( NG ) theorem [1,4,6,9,13,14,18,28,31,35,36,38,39,40,41,42,51,56,57,58,59].
The NG theorem is classified into the three categories. The NG theorem for
a system where it has an exact continuous symmetry ( i.e., a Lie group defined
over the real number field with a continuous topology ) from the beginning
is the ordinary NG theorem [13,14,35]: It should be called as the normal
Nambu-Goldstone ( NNG ) theorem [40,41]. All of the NG bosons must
be massless in the NNG case. If the system contains an explicit symmetry
breaking parameter and a VEV develops toward the same direction broken
by the parameter, then the symmetry breaking phenomenon is described by
the generalized Nambu-Goldstone ( GNG ) theorem [9,40]: In that case, the
NG bosons associated with the symmetry breaking have finite masses. One
of the important examples of such type of situations is the flavor symme-
try which is explicitly broken by the current mass matrix of quarks. The
anomalous NG ( ANG ) theorem is found in a Lorentz-symmetry-violating
systems, such as a ferromagnet, or a relativistic model with a finite chem-
ical potential [4,6,10,18,29,31,36,38,40,51,56-59]. In ANG, a subset of the
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NG boson space acquire finite masses under a certain mechanism, while the
complement of the subset gives massless bosons.

As the Part II of this paper ( we call Ref. [41] as Part I ), here, we
investigate the structure of a low-energy effective theory for a situation of the
ANG theorem. In this paper, we mainly consider the case where the topology
of the base space is continuous, the same with Rn or Cn. In principle, it is
possible that a field theory is defined over a space with several topologies
simultaneously.

The crucial point of the mechanism of the ANG case is found by Nambu
himself, that an emergence of a Heisenberg algebra coming from a semisim-
ple Lie algebra symmetry ( such as Lie(SU(N)), Lie(SO(N)), ... ) takes
place [36]. In Part I of this paper, we have revealed that the statement of
Nambu is generically observed in a diagonal breaking of SU(N) ( where only
the Cartan subalgebra remains unbroken in the Cartan decomposition ), and
a (quasi-)Heisenberg algebra relation is obtained. It is also shown in the Part
I that the (quasi-)Heisenberg algebra gives an uncertainty relation between a
canonical conjugate pair obtained from a pair of Lie algebra generators in the
Cartan decomposition ( so-called canonical basis ), and it is realized in the
geometric structure of the one-loop effective potential of kaon condensation.

2 Theoretical Structure of the Ground States

of the NNG/GNG/ANG Theorems

In this section, we discuss characteristic features of the ground states of the
phenomena of broken symmetry. The infinite-order degeneracy of ground
state of the NNG theorem is partially ( in general, but sometimes completely
in a GNG case ) lifted in the GNG or the ANG theorems, by some mecha-
nisms, revealed in Ref. [40] and the Part I ( see also, Ref. [9] ). The effective
potential of the NNG case implicitly contains a coordinate system of the NG
manifold, while that of the GNG and the ANG theorems have ( a part of )
them explicitly. The vacuum state of the NNG/GNG/ANG theorems is not
uniquely defined over the coordinate system of a Lie group in general: The
uniqueness of vacuum is usually discussed ( and, proved ) by an examination
on whether the ground state eigenvalue have a degeneracy for the lowest en-
ergy eigenvalue. In a case of the NNG, the energy of the ground state of an
effective potential is not changed under a Lie group operation ( usually given
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as an adjoint action to the order parameter ) of broken symmetry, while it
is changed in a case of GNG at the tree level, and such a change is started
from the one-loop level in a loop expansion in the ANG theorem ( shown by
an example, in Ref. [41] ). Let us consider an effective potential of a loop
expansion schematically given as follows:

Veff (Φ) = V
(0)
eff (Φ) + V

(1)
eff (Φ) + · · · . (1)

Here, Φ is an order parameter of non-vanishing VEV, (0) denotes the tree
level, while (1) indicates the one-loop level. Then,

V
(n)
eff (Φ) = V

(n)
eff (Adg(Φ)), ∀g ∈ G, ∀n ∈ Z≥0 (NNG), (2)

V
(n)
eff (Φ) 6= V

(n)
eff (Adg(Φ)), ∃g ∈ G, n ≥ 0 (GNG), (3)

V
(n)
eff (Φ) 6= V

(n)
eff (Adg(Φ)), ∃g ∈ G, n ≥ 1 (ANG). (4)

Here, G indicates a Lie group. Namely, the dependence of Veff on a group
operation distinguishes the NNG, GNG, and ANG cases. It should be noticed
that, not all of the broken generators can cause such a dependence in the
GNG case, since there is a flat direction in an effective potential defined
by a linear combination of the broken generators, in general ( see, Ref. [40]
). From the result of Part I, we know that the dependence of Veff on an
adjoint action of broken generator in the ANG is caused by an emergent
(quasi-)Heisenberg algebra at the one-loop level, while if the algebra is not
generated at the one-loop level, it cannot be obtained in any higher-order
contribution: Hence,

Theorem: The dependence on an adjoint action of broken generator in
the effective potential of the ANG is found at the one-loop level, namely, the
first-order displacement given by the Lie group action on the order parameter.
If the dependence is not caused at the one-loop level, it never takes place in
the higher-order contributions of the expansion of the effective potential.

In the frequently used discussion on the stability and uniqueness of the
ground state of a theory, one introduces a Hamiltonian H and a vacuum
state |0〉, and argues such that the vacuum is unique up to a multiplication
of a constant. Such a constant is restricted in a case of symmetry breaking,
i.e., cases of NNG, GNG, and ANG theorems. In the NNG theorem, a group
element g = eiS ∈ G can be regarded as a constant since it does not cause
any change of the eigenvalue of H against the vector g|0〉. On the contrary,
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such a group element cannot be regarded as a trivial multiplicative constant
in the GNG and ANG, in general. Thus,

Theorem: The geometric structure of an NG manifold defined over an
effective potential restricts/distinguishes the type of multiplication constant
for an eigenvector of the Hamiltonian of the system.

Since a definition of a ”trivial” multiplication constant determines a linear
algebra of a Hilbert space, this theorem states that the Hilbert spaces of the
NNG, GNG, ANG are somewhat different with each other. Moreover, this
difference can be characterized by constructing principal bundles by using G
and Φ ( trivial bundles ), and the bundles may be classified by some operator
algebra apparatus ( especially, C∗ and von Neumann algebras ). From this
perspective, some works of Ojima are interesting for us [42], and we will be
investigated this ”simple but deep” theorem further in elsewhere.

It must be emphasized that the Nambu-Goldstone theorem gives not only
a breakdown of a symmetry ( a reduction of symmetry ) but sometimes
causes another new symmetry ( emergence of a symmetry ) in a physical
theory. Such type of symmetries includes a Heisenberg group or a Galois
group where they are not contained in the symmetry of the beginning of the
theory [40,41]. This fact is not covered in the ordinary/naive formula of the
NG theorem.

3 Nonlinear Sigma Models in the ANG The-

orem

Now, we propose an effective Lagrangian which may capture the nature of
the ANG theorem, for describing physics in the vicinity of the ground state.
This Lagrangian models the low-energy excitations of the one-loop result of
the kaon condensation model discussed in Part I of the ANG theorem, and
we argue the model Lagrangian is also useful to understand a ferromagnet
of SU(2)→ U(1) since the nature of broken symmetries are quite similar in
the both cases ( kaon condensation and ferromagnet ) [41]. With respect to
the result of Part I, a nonlinear sigma model of SU(2)→ U(1) ferromagnet,
in which the NG bosons take their values on the unit sphere S2, in the ANG
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theorem may be given as follows:

LS2

ANG =
3∑
j=1

(
∂νχj

)2
+ λ(

3∑
j=1

χ2
j − 1)−

(
m2ei
√
χ2
1+χ2

2 + c.c.+ 2m2
)

(5)

With respect to the result of Part I, we have chosen that
√
χ2

1 + χ2
2 = π gives

a stable point. Note that the χ3 direction, which the VEV of ferromagnetism
develops, is special in the Lagrangian. Thus, we should say the space the
sigma model takes its value is ”topologically” the same with S2. The shape of
sphere may be deformed, which would be clarified by a Ricci flow of the one-
loop level [44,45,46]. Since the model contains the mass parameter m ∈ R1

( which has been introduced with respect to the result of Part I of the ANG
theorem ) explicitly, the massive particles are relatively suppressed in its one-
loop correction ( radiative correction ), the Ricci flow of the metric of the
model cannot develop under keeping the ”ideal” isotropy of a sphere even if
the flow starts from an isotropic sphere of constant curvature: Such a Ricci
flow does not have an absolute meaning, quite ”relative.” In other words,
the mass parameter m is not ”geometric”, causes a deviation from the target
space geometry. Thus, we obtain an insight that the flow approaches to the
unit sphere of isotropic S2 at the UV region where m can be neglected and the
asymptotic freedom may be found ( especially in the case of two-dimensional
spacetime ), while the S2 will be ”smashed”and a dimensional reduction in
the target space takes place when the flow approaches to a low energy region,
may give effectively a circle S1. We can say an isotropic Ricci flow is ideal,
only for the NNG case, and a Ricci flow becomes anisotropic in the GNG or
ANG theorems. The flow may have a dependence on the starting point of a
time evolution. After introducing the spherical coordinates,

χ1 = r cos θ cosφ, χ2 = r cos θ sinφ, χ3 = r sin θ, (6)

one gets

LS2

ANG =
(
∂νr

)2
+ r2

[(
∂νθ

)2
+ cos2 θ

(
∂νφ

)2]
−
(
m2eir cos θ + c.c.+ 2m2

)
+ λ(r2 − 1). (7)

In this Lagrangain, r and θ modes have finite masses. These r and θ have
self-couplings in the Lagrangian, while the φ mode acquires a self-coupling
through r and θ, relevant at the large-momentum region. The kinetic term
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of θ and φ will vanish at r = 0. In the case cos θ = 0, the kinetic term of φ
vanishes, and the kinetic energy does not contribute to the partition function
at θ = (n+1/2)π ( n ∈ Z ). From this form of the Lagrangian, it is apparent
for us that the low-energy excitation defines a circle S1 parametrized by φ.
We know from the result of Part I that χ2

1 + χ2
2 = r2 cos2 θ = const gives a

set of stationary points of the system, while the phase of χ1 + iχ2 ( namely,
the massless mode φ ) on a Gaussian plane is completely undetermined and
equivalent ( Veff is flat ). In general, a diagonal breaking of SU(N) in the
ANG theorem gives nNG = [dimG − rankG]/2 Heisenberg pairs, shown by
the Lie algebra ( Cartan ) decomposition by sl2-triples. It is shown in Part
I that a Heisenberg pair gives an uncertainty relation given over a subman-
ifold of the NG sector: One direction of the pair is ”localized”, while other
direction is ”delocalized” in the case of SU(2) ferromagnet. ( More precisely,
the pair (S1, S2) forms the three-dimensional Heisenberg algebra, and linear
combinations of them show such an uncertainty relation. ) This situation
has some similarity with a metal-insulator transition [27], which takes place
in the r-direction in the case given above. Then the uncertainty relation
determines the form of a nonlinear sigma model of the NG sector: The low
energy excitation of it gives a product of nNG circles. This means the relevant
dynamical degrees of freedom is reduced at low energy region in the ANG
theorem. Therefore, a Ricci flow of the nonlinear sigma model cannot give
an isotropic sphere, the flow is deformed in general. From these observations,
the Lagrangian at the low-energy low-temperature limit becomes,

LS2

ANG ∼ 〈r2 cos2 θ〉
(
∂νφ

)2
, (8)

which is defined over an S1. In the diagonal breaking of SU(N), the sigma
model is defined over

S1 ⊗ · · · ⊗ S1︸ ︷︷ ︸
nNG , (9)

and the effective sigma model becomes,

L
∏

nNG
S1

ANG ∼
nNG∑
j=1

(e2
j + f 2

j )
(
∂νφj

)2
. (10)

Here, we denote a Cartan decomposition of the Lie algebra as (hi, ej, fk),
where hj gives the Cartan subalgebra [12,16,22]. From the perspective of
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quasi-Heisenberg algebra we have revealed in Part I, this result implies that
the symplectic vector space given by the Heisenberg pairs will be decomposed
into a direct sum of two-dimensional symplectic subspaces at the low-energy
limit. The localization takes place in nNG-directions.

Since a Heisenberg group is a nilmanifold, its Killing form ( the kinetic
term of the sigma model Lagrangian ) vanishes. Thus, it seems difficult to
consider a Heisenberg group as a target space of a nonlinear sigma model.
However, if we consider the following correspondence,

S1 → x, S2 → p, S3 → h̄, [x, p] = ih̄, (11)

then the following Lagrangian can be introduced:

LH =
(
x⊗ ∂νφ1

)2
+
(
p⊗ ∂νφ2

)2
+
(
h̄⊗ ∂νφ3

)2
. (12)

Where, the last term of LH might be given as a result of a ( deformation )
quantization. This form of sigma model has an interesting aspect as its own
right, since the quadratic part in terms of x and p can be diagonalized/solved
by the similar method of a harmonic oscillator. Another possibility for can-
didates for an effective Lagrangian is given by using [26]

Z = ∂z + iz̄∂t, Z = ∂z̄ − iz∂t, T = ∂t, [Z,Z] = −2iT, (13)

then,

LH =
(
(∂z + iz̄∂t)⊗ ∂νφ1

)2
+
(
(∂z̄ − iz∂t)⊗ ∂νφ2

)2
+ 4

(
T ⊗ ∂νφ3

)2
.(14)

Note that this form is only meaningful at T 6= 0 due to the definition and
relation of the generators of the Heisenberg algebra.

For example, let us consider the case of algebra of Galilei group,

[Xi, Xj] = [Pi, Pj] = 0, [Xi, Pj] = ih̄δij,

[Li, Xj] = ih̄εijkXk, [Li, Pj] = ih̄εijkPk,

[Li, Lj] = ih̄εijkLk, [Si, Sj] = ih̄εijkSk, (i, j, k = 1, 2, 3). (15)

If the VEVs of the spatial angular momenta become

〈[L1, L2]〉 = ih̄〈L3〉 6= 0, 〈[L2, L3]〉 = 〈[L3, L1]〉 = 0, (16)
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then (L1, L2) can be treated as a canonical conjugate pair. In this case, the
Casimir element becomes

L2
1 + L2

2 + L2
3 ∼ X2 + P 2 + 〈L3〉2, (17)

and it seems like a Hamiltonian of harmonic oscillator, with the square of
the VEV 〈L3〉2 as a part of the vacuum energy. Such a ( finite dimensional,
finite degrees of freedom ) harmonic oscillator Hamiltonian generally arises
in a diagonal breaking of SU(N). Since it gives nNG = [dimG − rankG]/2
Heisenberg pairs, the Casimir operator as an ensemble of harmonic oscillators
is

H =
nNG∑
j=1

(P 2
j +X2

j ) + const. (18)

Here, Xj and Pj are coming from the broken generators of SU(N), must
not be confused with the Galilei algebra (15). However, after the conversion
from Lie(SU(N)) to the corresponding quasi-Heisenberg algebra via the ANG
theorem, they ( Xj and Pj ) can be interpreted as the generators of Galilei
algebra for nNG + 1-dimensional spacetime. Therefore, we can say such a
Galilei group acts on the quasi-Heisenberg algebra, as a symmetry of the
quasi-Heisenberg algebra:

Lie(SU(N)) → quasi-Heisenberg algebra → Galilei algebra.

From the example SU(2)→ U(1) of ferromagnet, we know the fact that
Arg(S1 + iS2) is the massless mode while |S1 + iS2| is massive and ”localized”
in the space of NG boson fields (S1, S2). By using the radial coordinates S1 =
X = r cos θ and S2 = P = r sin θ, S2

1 +S2
2 = X2 +P 2 = r2 is obtained. Thus,

the Hamiltonian of harmonic oscillators describes some degrees of freedom of
Heisenberg pairs given as radial directions well localized by the uncertainty
relations of pairs. A linear ( canonical ) transform of canonical variables
(Xi, Pj) corresponds to a transform between the generators of the Lie algebra.
By employing

aj =

√
ωj
2h̄
Xj +

√
−1

2h̄ωj
Pj, (19)

Nj = a†jaj, (20)

then the Casimir element is expressed as

H ∼ 2
nNG∑
j=1

h̄ωj
(
Nj +

1

2

)
. (21)
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An interesting subject is the relation between the harmonic oscillators and
the arithmetic number theory of quadratic forms of Weil [60]. They also may
relate with a harmonic analysis of a Heisenberg group [20] via an integral,∫

eiH(X,P,〈S3〉)f(X,P )dXdP. (22)

Another interesting feature is found in our interpretation of the Bost-Connes-
like model Hamiltonian ( a Riemann gas model of the Riemann zeta function
) [5] by our ANG theorem: The model Hamiltonian is a logarithm of our (18)
of the bosonic oscillators. Thus, in our insight, the Bost-Connes Hamiltonian
is subjected by operations of the Galilei algebra.

An interesting fact is that, due to the dynamical generation of a Heisen-
berg algebra Lie(H3) ( an algebra of Poisson-Lie group ) in the ferromagnet,
one can consider a deformation quantization [3,48] in the nonlinear sigma
model. The symplectic structure is defined by

〈[S1, S2]〉 = −〈[S2, S1]〉. (23)

( S1 and S2 are x and y components of spin variables, respectively. ) Here,
Lie(H3) is decomposed as (S1, S2)⊕S3 ' R2⊕R1, and then the pair (S1, S2)
acquires an independent automorphism of the algebra which preserves the
symplectic structure: This is an explicit realization of the broken isotropy of
SU(2). Thus, the symmetry conversions ( emergences ) are

SU(2) → Lie(H3) ⊃ symplectic symmetry.

(S1, S2) form Darboux coordinates, and this means that we ( can ) choose
a locally defined Euclidean space R2. Thus, ∇ = d holds ( ∇: connection
). A Weyl manifold can be defined by introducing a trivial bundle M ×W ,
where W is a Weyl algebra coming from (S1, S2, S3) and M denotes the
two-dimensional symplectic manifold. Note that the quantization will be in-
troduced in the algebra of generators (S1, S2) of the symmetry SU(2), namely
an internal symmetry, and not into the scalar fields ( NG bosons ) themselves.
Thus, it might be called as a quantization of gauge degree of freedom. Here,
a reader must carefully consider. It may be called as a ”quantum” and/or
”Heisenberg” gauge. This gauge degree of freedom does not have its classi-
cal counterpart, and it arises by a quantization ( a ”quantum symmetry” ).
Since a geometric object maintains a symmetry, such a ”quantum symme-
try” might be realized in a ”quantum geometry” with a ”quantum algebra.”.
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The result of Kontsevich states that there is a deformation quantization in
an arbitrary Poisson manifold ( a Poisson structure defined over a Euclidean
space Rn ), a one-to-one correspondence exists [24,25]. Cattaneo and Felder
re-express the result of Kontsevich by a path integration of Poisson sigma
model which has a role in string theory [7,8]. The NG boson fields (χ1, χ2)
defines a Poisson ( precisely, symplectic ) structure, then they have a defor-
mation quantization, and it will be rewritten in a path integral form of a
Poisson sigma model. ( Now, a ferromagnet connects with string theory! )
In our case of the sigma model of a ferromagnet, the Poisson structure and
its quantization depends on the VEV 〈S3〉, and thus we find a family of the
deformation quantizations. For example, the following operator is introduced
as a Moyal-Weyl star product [24,25,33]:

∗ = exp

[
〈S3〉

2

(←−
∂S1

−→
∂S2 −

←−
∂S2

−→
∂S1

)]
. (24)

Note that this operator is defined in the vicinity of the VEV 〈S3〉, and it lost
the meaning at the vanishing VEV ( S3; the z-component of spin variables ).
Of particular importance/interesting here is the fact that there is a quantum
fluctuation toward the direction of the VEV, and thus, we find a superposition
of the *-products, caused by a set of displacements of the VEV such like
〈S3〉+δ〈S3〉 ( δ implies a quantum fluctuation ), after releasing the constraint
of the unit sphere S2 in the sigma model. So called sigma mode in the
sigma model is given by δ〈S3〉. If a VEV such as 〈S3〉 is determined by a
potential of λφ4 type, V ∼ −m2φ2 + λ

2
φ4, then, the VEV is parametrized

as ±
√
m2/λ. Thus, the star product is ( or, may be ) singular at λ = 0:

This fact is somewhat similar with the gap function of superconductivity
which shows a non-perturbative effect. Moreover, when S3 is coupled with
an external ( magnetic ) field, the situation becomes the case of GNG theorem
( since the magnetic field acts as an explicit symmetry breaking parameter
), which should become an ANG case at the vanishing limit of the magnetic
field. Such an external field can be stochastic, then the Heisenberg algebra
〈[S1, S2]〉 = i〈S3〉 also acquires the stochasticity, which is anisotropic in the
SU(2) space: The ”Planck constant” is now stochastic [12,43,49]. Then,
if f(Si) and g(Si) are functions of the spin variables, their quantization (
quantized algebra ) is obtained by

f(Si) ∗ g(Si) = f(Si) exp

[
〈S3〉

2

(←−
∂S1

−→
∂S2 −

←−
∂S2

−→
∂S1

)]
g(Si)
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=
∫
DXDηeiS[X,η]fg. (25)

Here, S[X, η] indicates the classical action of Poisson sigma model [8]. It
should be mentioned that the equivalence class of a deformation quantiza-
tion ( defined by using a Hochschild cohomology, and the Deligne’s relative
class ) [24] can be found also the ”quantization” prescription of our sigma
model: Namely, it depends on (i) the value and direction of VEV ( vac-
uum alignment ), (ii) the equivalence class and Deligne’s relative class of
*-products. Since both SU(2) and H3 are embedded into SU(2, 1) [26], the
deformation quantization discussed here acts as a functor between the origins
( tangent spaces ) of SU(2) and H3. Since the Heisenberg algebra is a central
extension,

0→ R1 → Lie(H2n+1)→ R2n → 0, (26)

such a path integral or a deformation quantization perturbatively gives the
algebra extension to a commutative algebra. Due to the Stone-von Neumann
theorem of quantum mechanics [50] of a finite degrees of freedom, an irre-
ducible representation is uniquely determined up to unitary transformations
( a unitary equivalence ) by choosing the element of central extension ( now
it is a VEV 〈S3〉 ). Those irreducible representations are defined on any point
of the effective potential Veff parametrized by 〈S3〉. The transformation law
( if it exists ) between those irreducible representations of different VEVs
may not be given as a simple/naive unitary transform. It is interesting for us
to consider a theta function representation of a Heisenberg group in our ANG
theorem [34]: It might be considered after globalizing the Heisenberg algebra
to the Heisenberg group in our ANG theorem. This subject relates number
theory, modular forms [17], upper half spaces, various types of theta functions
( especially, higher-dimensional analogues ), and ( generalized ) Heisenberg
groups. In general, an equivalence class of deformation quantizations is de-
fined by T (f ∗ g) = T (f) ∗′ T (g) with (C∞(M)[[ν]], ∗) ' (C∞(M)[[ν]], ∗′),
classified by the cohomology H2

deRham(M,R)[[ν]] ( M : a symplectic mani-
fold ). Thus, it is defined by the same ”ν”. In our context of this paper,
this equivalence means a local aspect of a deformation, namely, it is locally
defined over an NG manifold ( any point of the space of Veff given by a
specified/fixed value of 〈S3〉 ), since the NG manifold ( now it is embedded
in Veff ) has Sj as its local coordinate system. By the result of Kontsevich,
the deformation quantization will be uniquely defined if an NG manifold has
a symplectic structure uniquely and globally.
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From the perspective of deformation quantization, the Weyl representa-
tion of a Heisenberg group is interesting for us. Let G ( g ∈ G ) be a locally
compact commutative group, Ĝ ( γ ∈ Ĝ ) be its dual. Let H be a Hilbert
space, and let U be a unitary representation of G over H, V be a unitary
representation of Ĝ. Then the Weyl representation of a Heisenberg group
gives,

V (γ)U(g) = γ(g)U(g)V (γ). (27)

This representation is remarkable since in the ferromagnet, effectively,

eiαS1eiβS2 = e−iS3αβeiβS2eiαS1 (28)

is satisfied. Namely, the Heisenberg pair (S1, S2) is re-defined as a dual pair
of locally compact commutative topological group.

In our ANG theorem, the ( quasi ) Heisenberg algebra emerged from a Lie
algebra of internal symmetry is usually finite-dimesional. ( Namely, quan-
tum mechanical, not quantum field theoretical. ) For example, in the case of
SU(2) → U(1), a one-dimensional quantum mechanics (X,P ) arises. This
fact indicates that the dynamical effect caused by the ( quasi ) Heisenberg
algebra in a system of broken symmetry may be well described by a quan-
tum mechanics, WKB, and classical mechanics of a point particle. Here,
we must mention that, even though such a ”finiteness” exists in a ( quasi )
Heisenberg algebra of an NG sector, the algebra of local field operators of the
NG bosons does not show the von Neumann uniqueness theorem ( in fact,
a unitary equivalence is violated ). In other words, one can say a finiteness
and an infinity coexist in the NG sector of the ANG theorem by unitary
(in)equivalence.

4 Around The Nambu Mechanics

From the symplectic structure of ANG theorem, it is interesting for us to
enlarge our ANG theorem to the Nambu-Poisson manifold of the Nambu
mechanics [37,54]. The Nambu mechanics is defined by several Hamilton
functions ( conserved quantities ) to give a set of equations of motion of
canonical variables. For example, we can prepare a usual Hamiltonian with
a second-order Casimir invariant of a Lie algebra to construct a Nambu
mechanics. ( An interesting fact is that a Casimir invariant of a Lie algebra
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is related with a Casimir energy via the mathematics of zeta functions and
the Riemann hypothesis. ) The Nambu-Heisenberg equation and the Nambu
bracket are defined by

i
d

dt
F = [F,H,G], (29)

[A,B,C] = [A,B]C + [B,C]A+ [C,A]B = ±ih̄, h̄ = 1. (30)

( We have chosen the unit h̄ = 1. ) Here, H and G denote Hamilton
functions, and we assume them as Hermitian and lower-bounded. The set
(A,B,C) give the Nambu triplet of canonical variables. Of course, one can
choose both of signs ±ih̄, and this implies the quantum mechanics ( both the
ordinary Hamilton mechanics and the Nambu mechanics ) has a symmetry
of Galois extension Gal(C/R). This formalism can be considered in the case
of ferromagnet in our ANG theorem when we choose

〈[S1, S2, S3]〉 = i, 〈S2
1〉 = 〈S2

2〉 = 0, 〈S2
3〉 6= 0, (31)

H = H(S1, S2, S3), G = G(S1, S2, S3). (32)

In the case of Lie(SU(2)), [S1, S2, S3] = i(S2
1 +S2

2 +S2
3) ( proportional to the

second-order Casimir element ), and thus the above situation 〈S2
1〉 = 〈S2

2〉 =
0, 〈S2

3〉 = 1 ( = h̄ ) is the same with the unit sphere condition of the nonlinear
sigma model. Hence, under a rotation of the direction of the VEV 〈S3〉 (
which may belong to SL(3,R) or SL(3,C) discussed by Nambu as Lie groups
of canonical transformations ) does not cause any problem for the quantum
Nambu bracket. Here, H and G take their value in Lie(SU(2)), conserved
quantities, and polynomials of the generators of SU(2). In the frequently
used formalism of the Nambu mechanics, H is an ordinary Hamiltonian,
while G is a second-order Casimir invariant. However, we can say any type
of analytic functions of H and G, such like F1(H,G) and F2(H,G), are also
conserved under satisfying a certain condition, utilized for our formalism of
the Nambu mechanics: Namely,

F1 = F1(H1, H2, t), F2 = F2(H1, H2, t), i
d

dt
Φ = [Φ, F1, F2]. (33)

Here, H1 and H2 are assumed as conserved quantities. We formally consider
the classical counter part of the Nambu mechanics: The classical Nambu
bracket of canonical triplet and the Nambu-Hamilton equation of motion are
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defined as follows:

{F1, F2, F3} =
∂(F1, F2, F3)

∂(S1, S2, S3)
, Fl = Fl(S1, S2, S3), (l = 1, 2, 3),(34)

d

dt
F = {H1, H2, F}. (35)

The classical Nambu bracket {A,B,C} is a generalization of a Poisson-Lie
algebra: One may call it as ”the Nambu-Poisson-Lie algebra” ( even though
the operation is ternary ). The symplectic form ω and the volume form v
are given by the dual basis of canonical variables:

ω = dS1 ∧ dS2, v = dS1 ∧ dS2 ∧ dS3. (36)

Note that now (S1, S2) gives Darboux coordinates. Hence, a conserved quan-
tity defined over the Darboux coordinate system can be regarded as a Hamil-
tonian. For example,

H(S1, S2) =
1

2
〈S2〉2 + V (〈S1〉). (37)

Then the Hamilton vector field, the equation of motion, and the Poisson
bracket are formally defined as follows [2]:

XH = −∂H
∂S2

∂S1 +
∂H

∂S1

∂S2 , (38)

d

dt
(S1, S2) = −XH(S1, S2), (39)

Xfg = {f, g}, [Xf , Xg] = X{f,g}. (40)

The diagonal breaking of SU(N) generally gives a (quasi-)Heisenberg alge-
bra, and thus they will be embedded into the formalism of Nambu n-plet.
For example, the set of differential operators (Z,Z, T ) given above can also
be utilized to define a quantum Nambu bracket [Z,Z, T ] and Hamiltonians
(H(Z,Z, T ), G(Z,Z, T )). In this case, the Hamilton vector field is

XH = −∂H(Z,Z)

∂Z
∂Z +

∂H(Z,Z)

∂Z
∂Z . (41)

This expression may have an interesting implication in geometry and theory
of Riemann surfaces [26]. A possible generalization of the Nambu mechanics
might be obtained by the Jacobian between two Haar measures:

d

dt
g′ =

∂(g′)

∂(g)
,

∫
G
f(g)dg →

∫
G
f(g′)dg′. (42)
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Some interesting aspects of the formalism of Nambu mechanics will be
found ( or, enlarged ) when we introduce notions of functional analysis. Let
us consider a quantum Nambu mechanical system of two Hamiltonians. For
example, we consider a unitary operator ( propagator, wave operator, ... ),

U(t1, t2; 0, 0) = e−iH1t1−iH2t2 , [H1, H2] = 0. (43)

Here, we assume t1 and t2 can be treated independently with each other in
our calculus ( beside the relation of Eq. (47) ). It is apparent that the unitary
operator conserves the norm of a state vector. Then, we will obtain a rather
simple solution of the quantum Nambu mechanics. ( An interesting subject
of usage of such a wave operator is the Huyghens principle, in which a wave
in an odd-dimensional spacetime is extinguished immediately. In a paper of
conformal symmetry breaking, the anomalous behavior of the NG theorem
is explained by transformation laws of a propagating wave [28]. More formal
discussion on it is found in Ref. [19]. ) The equations of motion are defined
by the following adjoint form:

F (t1, t2) = U(t1, t2; 0, 0)−1F (0, 0)U(t1, t2; 0, 0), (44)

i
d

dt1
F (t1, t2) = [F (t1, t2), H1], (45)

i
d

dt2
F (t1, t2) = [F (t1, t2), H2]. (46)

Namely, the time evolutions toward t1-direction is caused by H1, while that
of t2-direction is given by H2. For the consistency with the quantum Nambu-
Heisenberg equation (29), we find

d

dt
F =

( d

dt1
F
)
H2 −

( d

dt2
F
)
H1 (47)

should be satisfied. Then the spectral representation is found to be

〈φ|e−iH1t1−iH2t2|ψ〉 =
∑
n

∫
e−iλ1t1

∫
e−iλ2t2d〈φ|EH1(λ1)|n〉d〈n|EH2(λ2)|ψ〉.(48)

In a typical case of Nambu mechanics, H1 is the total energy while H2 is the
second-order Casimir invariant. Thus, if we prepare a simultaneous eigen-
state of both H1 and H2,

H1|n,m〉 = εn|n,m〉, H2|n,m〉 = εm|n,m〉, (49)
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then

ρ(β1, β2) = e−β1H1−β2H2 , (50)

〈n′,m′|ρ(β1, β2)|n,m〉 = δnn′δmm′e−β1εn−β2εm . (51)

The functional form of ρ is understood as a Wick rotated unitary operator
U . Now we recognize the fact that ρ(β1, β2) gives a Schrödinger semigroup:

ρ(β1, β2)ρ(β′1, β
′
2) = ρ(β′1, β

′
2)ρ(β1, β2) = ρ(β1 + β′1, β2 + β′2). (52)

After introducing the state vector of the system in the following manner,

|β1, β2〉 = e−β1H1−β2H2|0, 0〉, (53)

we find the following equations of motion:

d

dβ1

|β1, β2〉 = −H1|β1, β2〉, (54)

d

dβ2

|β1, β2〉 = −H2|β1, β2〉. (55)

Since there is an inequivalence of time evolutions caused by H1 and H2 in the
statistical factor ρ, diffusion equations obtained from hydrodynamic limits
of the Boltzmann equation of ρ become

∂t1ρ = D1∇2ρ, ∂t2ρ = D2∇2ρ, (56)

and D1 6= D2 in general. The vacuum energy can be defined as follows:

E0(H1, H2) = − lim
β1→∞

1

β1

〈ψe−β1H1ψ〉 − lim
β2→∞

1

β2

〈ψe−β2H2ψ〉. (57)

The partition function is defined by the following two-inverse-temperature
form:

Z(β1, β2) = Tre−β1H1−β2H2 , (58)

and then the entropy of the system is given by

S = −Trρ̃ ln ρ̃, (59)

ρ̃ = Z−1(β1, β2)ρ(β1, β2). (60)
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The density matrix ρ̃ is re-expressed as follows:

ρ̃ = (Z(β1, β2))−1
∑
|n,m〉e−β1En−β2Em〈n,m|. (61)

A statistical average of an operator O is given by

O = TrOρ̃. (62)

The average value of energy is

E = −
( ∂

∂β1

+
∂

∂β1

)
ln Trρ. (63)

Here, we regard the inverse temperatures β1 and β2 are independent with
each other.

5 Physical Implications and Perspectives

In this section, we discuss some physical implications and perspectives of our
ANG theorem.

For example, a spin density of ferromagnet gives a similar role with a
charge density of a relativistic model with a finite chemical potential, and
both of the examples show the ANG behavior [41]. In the case of the break-
ing scheme SU(2) → U(1) of a ferromagnet, a nonlinear sigma model of it
keeps the spin density ( a uniformly conserved quantity ), namely the second-
order Casimir element of Lie(SU(2)), since the sigma model describes a low-
energy excitation of a Heisenberg ferromagnet of localized spin system. On
the contrary, a spin density is modulated in an itinerant electron ferromag-
netism [32,53], thus a more complicated situation takes place in the NG sector
of such a system when we consider the ANG theorem from a local point of
view. The Casimir element is not a conserved quantity in theory of itinerant
electron ferromagnetism, and a deformation quantization or the Heisenberg
algebra 〈[S1, S2]〉 = i〈S3〉 itself depends on spatial coordinates in the case
of itinerant electron ferromagnetism due to the modulation. In that case,
one cannot apply naively the framework of the Nambu mechanics we have
dicussed. It was emphasized in theory of itinerant electron ferromagnetism
that a careful consideration on both quantum and thermal fluctuations of
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spins are important for obtaining a qualitatively/quantitatively correct de-
scription of thermodynamics of a ferromagnet. Since a statistical fluctuation
is defined by a displacement from a statistical average,

δX = X − 〈X〉, 〈X〉 =
1

T

∫ T

0
dtX(t), (64)

it is apparent for us that it has a deep connection with an ergodic theory
in the sense of dynamical system in mathematics. ( Usually, such a statisti-
cal average in statistical physics is taken by a Hamiltonian in phase space,
though, as we have observed in the Nambu mechanics, group operations of
a Lie group on an NG sector is not far from it. ) Namely, the NG modes
of ferromagnet give quantum/thermal fluctuation, which may be interpreted
by an ergodic theory, theory of dynamical systems especially by connections
with Lie groups and number theory [11,30,47].

In the anomalous NG theorem of a spin system, we have observed the
commutator [S+, S−] ( of course, exactly equivalent with [S1, S2] ) has a
crucially important role. We can find a case where such a commutator is
generated radiatively/perturbatively. A typical example is the famous cal-
culation of Kondo [23,62], the second-order perturbation of the Kondo effect
of a local spin fluctuation. Moreover, a single-cite Kondo effect can be un-
derstood as a symmetry breaking: A generation of a local spin moment gives
a broken state ( but not a phase ), and the essence of the Kondo effect is
physics of fluctuation of spins. Therefore, a theory which bridges between
a single-cite spin model and an infinitely extended Heisenberg-type model
may provide some interesting features for our ANG theorem. A supersolid is
studied by a Bose-Hubbard model, which is transformed into an anisotropic
Heisenberg model [27]. Thus, an NG boson in a supersolid is a ”magnon”
with an explicit symmetry breaking of SU(2). A spin liquid state is usually
considered in a Mott insulator, not a metal, and the formalism and the model
Hamiltonian of Wen can be examined by the framework of the anomalous
NG theorem [61]. His model is a Heisenberg Hamiltonian which is derived
from the half-filled Hubbard model with strong on-site Coulomb repulsion
( the strong-coupling limit ), and then it is converted as a fermion system
interacting with an SU(2) lattice gauge theory: That is a composite boson
model ( the NG bosons are given as composites of fermions ).

Since a relatively large fluctuation will develop toward the direction of
massless NG boson or a relatively small mass mode, which we have examined,

18



it will dominate the fluctuation-dissipation theorem ( expressed directly by
the Keldysh Green’s function [21], though a massless mode may have an IR
divergence ) in a ferromagnet. Another interesting issue is the Casimir effect
of zero point ( quantum fluctuation ) energy of a ferromagnet. This quantity
is affected from a geometry of a system, and it is expressed by the Riemann
zeta function [52]. A thermal spectrum of the Hawking-Unruh effect may
obey the fluctuation-dissipation theorem, and thus a system of spontaneous
symmetry breaking and its restoration which show the ANG behavior would
be found [15,39,55].

If a nuclear matter of kaon condensation has a surface, the density of
nucleons changes drastically at the vicinity of surface: In such a situation,
a ”metamorphose” from the NNG to the ANG theorems might be taken
place. Since the mass of NG bosons will change from the NNG to the ANG
situations, the thermodynamical nature ( low-energy excitation ) may change
at the vicinity of the surface. If the difference of the numbers of up-spin and
down-spin fermions is finite, which can be settled by two chamical potentials
µup and µdown: A symmetry breaking in such a case also be subjected by our
ANG theorem. One of interesting problems for us from the context of our
ANG theorem is the case where the chemical potential µ depend on time,
such that a situation where the symmertry of matter/anti-matter is broken
by an underlying mechanism ( for example, CP violation ).
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