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Abstract:
Some mathematical aspects of holonomy in the Nambu-Goldstone theorem
are discussed. A unified theorem of the normal, generalized, and anomalous
Nambu-Goldstone theorems are presented.

It is well-known fact that the dispersion relation of spin waves in a fer-
romagnet and an antiferromagnet of SU(2) Heisenberg models with cou-
pling constant J are given by E(k) = 2J(1 − cos k) ( ferromagnet ) and
E(k) = 2J sin k ( antiferromagnet ). Even though the number of broken gen-
erators are two in the both cases, the number of observed Nambu-Goldstone
( NG ) bosons is one for ferromagnet and two for antiferromagnet. Such
an anomalous behavior, such as a ferromagnet, in the NG theorem is fre-
quently found in a system with explicitly broken Lorentz symmetry [9,10].
It was revealed in Part I of this paper [13] that a bosonic kaon condensation
model with a finite chemical potential gives a mode-mode coupling between
two broken generators (Q1, Q2) of SU(2), by the following Lagrangian of the
Nambu-Goldstone ( NG ) sector of the spontaneous symmetry breaking:

L = −Φ†0
[
g−1(∂ν∂

ν − 2iµ∂0 − µ2)g
]
Φ0, (1)
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where, µ is a chemical potential, g ∈ SU(2), and Φ0 is the vacuum state.
In Refs. [11,16], it was pointed out that the term proportional to µ gives a
Berry phase. The corresponding part of the Berry phase in our Lagrangian is
expressed in the following form after expanding the following parametrization
of a group element g = exp(i

∑
A χ

AQA):

2iµΦ†0g
−1∂0gΦ0 = −2µ

∑
A>B

(χA∂0χ
B − χB∂0χA)Φ†0[Q

B, QA]Φ0 + · · · . (2)

Here, (χA, χB) are the NG bosons associated with the broken generators
(QA, QB) ( A,B = 1, 2 in the case of SU(2) kaon condensation ). The VEVs
of the commutators [QA, QB] describe mode-mode couplings between pairs
of NG bosons of (QA, QB) realized over a ground state of the system, and
they give a (quasi-)Heisenberg algebra in general [9,13]. Since the part of the
Lagrangian also causes a non-vanishing contribution of the Berry phase in a
theory, we argue the following theorem in this paper:

Theorem: A mode-mode coupling algebra of quantum fluctuations as-
sociated with a spontaneous symmetry breaking of the anomalous Nambu-
Goldstone theorem, which is explicitly realized on the ground state of the
system via a 1-form, is represented globally by a holonomy of a symplectic
manifold.

Namely, when a Maurer-Cartan form g−1dg has a non-vanishing vac-
uum expectation value, it gives a (quasi-)Heisenberg algebra which implies a
Heisenberg-type uncertainty relation between a pair of NG bosons would be
found in the vacuum state of the system. Simultaneously, the Maurer-Cartan
form can give a non-vanishing contribution to the integral of Berry phase (
holonomy ),

γ(C) ∼
∮
C
g−1dg. (3)

Here, we should mention that we do not have to take a VEV of g−1dg for
our definition of the Berry phase.

Needless to say, an NG mode is given by a generator of an algebra of
a broken symmetry. A mode-mode coupling of the anomalous NG theorem
explicitly appears from a non-vanishing off-diagonal contribution of genera-
tors of the algebra after taking a VEV, and it defines a symplectic vector
space quite generally in a diagonal breaking scheme ( all generators except
the Cartan subalgebra are broken ), since a set of broken generators ( the
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number of broken generators in a diagonal breaking is always even ) gives
symplectic structures pairwisely, due to the odd nature of any Lie bracket
[X, Y ] = −[Y,X]. A geometric realization of such an algebra over a symplec-
tic space is given as a holonomy ( Berry phase ) via a connection 1-form (
now, a Maurer-Cartan form ). Here, we will show the observation given here
is quite general.

As we have mentioned above, it is a trivial fact that a symplectic structure
is always found in a Lie algebra due to the definition of a Lie bracket. Thus,
in that sense, a symplectic structure always exists in any tangent space of
group manifolds of NNG ( normal NG ), GNG ( generalized NG ), and ANG
( anomalous NG ) cases [12,13]. What a special aspect of such a symplectic
structure in ANG is its explicit appearance via the Heisenberg algebra which
will be found from a VEV of a Lagrangian. A symplectic manifold always
has a symplectic connection, and which can be utilized to define a holonomy,
namely a Berry phase. Hence, such a holonomy can explicitly appear in a
case of the ANG theorem, while it cannot be found in any VEV of NNG and
GNG cases since they have no example of a generation of a Heisenberg-type
algebra coming from a VEV of a Lie algebra of a symmetry. It must be
emphasized that the group action of Sp(1) ( ' Spin(3) ) on the space of a
pair of broken generators is not a symmetry of the system in general.

A theory on symplectic structures assoicated with Lie groups is well-
established in literature [1,2,3,4,5,6,15]. A symplectic homogeneous space [1,5,6]
is frequently found in a diagonal breaking scheme of NG theorem. The def-
inition of a symplectic homogeneous space is given as follows. Let G be
a semisimple connected Lie group, and let H be a connected closed sub-
group of G, let Ω be a G-invariant symplectic form. A symplectic homo-
geneous space is given by the triple (G,H,Ω). If we choose Z from an
element of a Cartan subalgebra ( or, a linear combination of Cartan sub-
algebras ) of Lie(G), then such a G-invariant symplectic form Ω can be
given by the Killing form ωZ(G) = −K(Z, [X, Y ]) ( X, Y, Z ∈ Lie(G) ) for
a fixed Z. Then, a symplectic homogeneous space is obtained as a coset
G/OG(Z), where OG(Z) = {g ∈ G|Ad(g)Z = Z} is an adjoint orbit. Thus,
we can say a diagonal breaking of a Lie group in NG theorem ( for example,
SU(2) → U(1), SU(3) → U(1) × U(1), ... ) generally defines an associ-
ated symplectic homogeneous space: In a diagonal breaking, Z belongs to
the space of symmetric generators. Here, one should notice the fact care-
fully that a diagonal breaking does not fix a representation of Z. Due to

3



the orthogonality of basis/generators of a Lie algebra, the similarity/relation
of the Killing form ωZ(G) = −K(Z, [X, Y ]) and the part of our Lagrangian
−2µ

∑
A>B(χA∂0χ

B − χB∂0χA)Φ†0[Q
B, QA]Φ0 ( namely, a Maurer-Cartan 1-

form g−1dg ) is obvious. Since a diagonal breaking chooses and fixes the
Cartan subalgebra, the Maurer-Cartan form has a correspondence ( injec-
tive, surjective, or bijective ) with the Killing form. As we have mentioned
above, this type of symplectic homogeneous space does not distinguish be-
tween any type of NG theorem ( NNG, GNG, ANG ). In the NNG theorem,
the effective potential Veff or the low-energy effective Lagrangian Leff of
a theory has no explicit dependence on the bosonic coordinates of broken
generators, while a dependence will be found in Veff or Leff of the GNG or
ANG cases [12,13]. Thus, we can say a symplectic structure of symplectic
homogeneous space is implicit in an NNG case, while it becomes apparent
( explicitly realized ) in an ANG case. While, a direction ( of the Cartan
subgroup ) orthogonal to a symplectic (sub)space of G appears explicitly in
a case of GNG theorem [12]. Hence we have arrived at the ultimate under-
standing of the notion of symmetry breakings, summarized as the following
”unified” theorem.

Theorem: In a diagonal breaking, the GNG theorem is an extension of
the NNG theorem toward the direction of Cartan subgroup of a Lie group G,
while the ANG theorem gives the symplectic subspace orthogonal to the space
of the Cartan subgroup explicitly via a Lagrangian. This fact indicates us that
the GNG and ANG are only generalizations of the NNG theorem, according
to the decomposition of a vector space to the vertical and horizontal subspaces.

A Berry phase, namely a holonomy, is a Lie group arises from a parallel
transport of a vector bundle ( i.e., a connection 1-form ). The definition of
Berry phase in quantum mechanics is

γn(C) = −=
∮
C
〈n(X(t))|∂X |n(X(t))〉dX − i ln〈n(X(0))|n(X(T ))〉. (4)

Here, X denotes the parameter space for defining the holonomy, and the
logarithmic term contributes in the case when |n〉 is not single-valued. A
Berry curvature of U(1)-holonomy can be interpreted as a magnetic field
defined over the parameter space.

Let us examine a geometric aspect of the mode-mode coupling term of
our Lagrangian 2iµΦ†0g

−1∂0gΦ0 as a Maurer-Cartan 1-form g−1dg ∈ Lie(G).
Let M be a manifold, let π : P → M be a principal G-bundle, and let
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ω ∈ Ω1(P ) ⊗ Lie(G) be a Lie(G)-valued 1-form. The Maurer-Cartan form
belongs to ω, and a holonomy is defined by [15],

γ(C) =
∮
C
ω. (5)

The curvature 2-form is also defined as Ω = dω + 1
2
[ω, ω] ∈ Ω2(P )⊗ Lie(G).

Needless to say, Ω = 0 is the condition of locally flat ω, and the Maurer-
Cartan form satisfies this condition. A holonomy group Hol is an automor-
phism of a tangent space of a manifold M : Holx(M) ⊂ Aut(TxM). Of
particular importance ( and appropriate for the definition ) here is a case of
M as a group manifold. The Borel-Lichnerowicz theorem (1952) states that
any holonomy group of a Riemannian manifold is a Lie group. In the diag-
onal breaking of NG theorem ( NNG, GNG, ANG ), this type of holonomy
is given by a symplectic connection 1-form, and the corresponding curva-
ture is a symplectic curvature 2-form. Some interesting theorems for us are
summarized as follows:

• Any symplectic manifold has a symplectic connection [4].

• Any space in which a *-product of deformation quantization is naturally
defined always has a symplectic connection [4].

• Any Poisson manifold ( a symplectic manifold is a special case of a
Poisson manifold ) has a unique *-product [8].

A diagonal breaking of the NG theorem ( NNG, GNG, ANG ) is a case
where all generators except the Cartan subalgebra are broken. Especially in
a case of ANG theorem, a symplectic space is found explicitly/apparently
in each pair of broken generators coupled through a physical space of our
Lagrangian, and thus the total space of broken generators are pairwisely de-
coupled. Since the number of pairs is estimated by nNG = 1

2
(dimG− rankG)

( recall that rankG gives the dimension of the Cartan subalgebra/subgroup
of G ), the symplectic structure in that case is expressed by

nNG︷ ︸︸ ︷
Sp(1)× Sp(1) '

nNG⊗
l=1

(R2/Z2)l. (6)

Here, R2/Z2 is called as a symplectic torus. Namely, the space of broken gen-
erators ( the NG sector ) are decomposed into a product of two-dimensional
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symplectic spaces ( a product of sympletic tori ), (M = R2nNG , g) = (R2, g1)⊗
· · · ⊗ (R2, gnNG

) ( g, g1, · · · , gnNG
are metrics ). Again, we mention that such

a structure of a product of symplectic tori will be found in any case of NNG,
GNG, and ANG. The characteristic aspect of the ANG theorem is that it
gives the structure apparently via a VEV ( VEVs of Lie brackets ) of the
Lagrangian of a theory. For each symplectic torus, a symplectic connection
∇ can be defined, and a holonomy will be defined by using it. Then, from
the de Rham splitting theorem [15], the holonomy group of total space is de-
composed as Holp(M) = Hol(1)× · · · ×Hol(nNG). This is the Berry phase
generically observed in a diagonal breaking scheme of ANG theorem:

Theorem: The total holonomy group ( Berry phase ) of a diagonal break-
ing scheme of the ANG theorem is given by Hol(1)× · · · ×Hol(nNG), where
each holonomy group of the direct product is Sp(1).

In summary, our logic presented here is given by the following scheme:

A diagonal breaking in NG theorem → a symplectic homogeneous space →
a Heisenberg algebra via a finite VEV of a Lagrangian in a situation of
ANG → symplectic connection 1-form → holonomy ( Berry phase ) in a
symplectic manifold → curvature 2-form → Chern-Weil homomorphism →
characteristic class.

In Part I, it was shown that a (quasi-)Heisenberg algebra is generally
obtained in a diagonal breaking of a Lie group G. Such a situation can be
found not only in cases of SU(N) or SO(N) but also in the three-dimensional
conformal group of SL(2,R), [L, T ] = T, [L,H] = −H, [H,T ] = 1

2
L ( L; di-

latation, T ; special conformal transformation, H; translation ). After taking
a VEV such as 〈T 〉 = 〈H〉 = 0, and 〈L〉 6= 0, then a Heisenberg algebra
is obtained. A symplectic structure is found in the two-dimensional space
(H,T ), and Sp(1) acts on this space of broken generators. Thus, one can
consider an Sp(1) holonomy ( Berry phase ) of this system.

As we have discussed in the Part I of this paper, in the case of SU(2) kaon
condensation model, the Nambu-Goldstone bosonic coordinates (χ1, χ2) as-
sociated with the broken generators form a cylinderical coordinates (r, φ) =

(
√
χ2
1 + χ2

2,Arg(χ1 + iχ2)). The one-loop effective potential Veff of the kaon
condensation model shows a periodicity of trigonometric function such that
Veff ∼ cos r, while it is completely flat along with the angular variable φ.
Thus, the symmetry realized in the vacuum of the physical system is U(1)
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rotation along φ, while these variables (r, φ) is expressed in the symplectic
space of (χ1, χ2) which is subjected by a group action of Sp(1). The period-
icity and flatness reflect the Heisenberg uncertainty of the three-dimensional
Heisenberg algebra Lie(H3) coming from the VEVs of Lie(SU(2)). We should
mention that the group action of Sp(1) acts on the group manifold ( or, the
vector space ) of (χ1, χ2), and not on, for example, the effective potential Veff .
It should be noticed that (r, φ) are interpreted as action-angle variables of
a harmonic oscillator ( see Part II of this paper ) which is expressed by the
canonical conjugate pair (χ1, χ2) ( since χ2

1 + χ2
2 = P 2 +X2 where P and X

are momentum and position, respectively ). Therefore, a dynamics of phase
transition of the kaon condensation approaches to the ”limit cycle” r = r0,
a set of stationary points. Since (χ1, χ2) form a canonical conjugate pair
of three-dimensional Heisenberg algebra, the vacuum (χ2

1 + χ2
2 − h̄)|Ψ〉 = 0

( h̄ ∝ 〈Q3〉 ) corresponds to the minimal uncertainty condition, namely a
coherent state of a harmonic oscillator. In this case, a mapping, defined over
Veff , which describes a relaxation process of the dynamics of phase transi-
tion can be considered. If such a mapping is hyperbolic and has a positive
Lyapunov exponent, then a chaos associated with the relaxation dynamics
of phase transition might take place. Such a map of a positive Lyapunov
exponent cannot be given by a U(1) group action, while a group action of
Sp(1) which might be given as a toral automorphism of a symplectic torus
on the space (χ1, χ2), might causes a hyperbolic dynamics [2,7].
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