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ABSTRACT –  We calculate in this article an exact theoretical value obtained 

classically for the secular precession of the perihelion of Mercury, followed by 

the theory of Stockwell, based on planetary theory of Laplace, your Mécanique 

Céleste: found 5600’’.84 of arc per century for the angular velocity of the 

longitude of the perihelion of Mercury, d/dt, adding to the precession of the 

equinoxes of the Earth relative to the beginning of the year 1850, as calculated 

by Stockwell. 
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The best known anomaly of the motion of Mercury is the advance of the 

perihelion precession in relation to the classical theory, discovered by Le Verrier 

[1], anomaly that explained by General Relativity [2], [3]. We intend in this article 

to calculate this precession of the perihelion of Mercury following the Newtonian 

theory, the Mécanique Céleste of Laplace, and show that the theoretical value 

obtained is in excellent agreement with the observed value. This will lead to the 

conclusion that General Relativity does not correctly explain the precession of 

the perihelion of Mercury, unlike the classical theory. First we calculate this 

precession based on the data of Stockwell [5]. 

 John Nelson Stockwell (1832-1920) published in 1872 an excellent job 

on the secular variations of the orbital elements of the eight planets of the solar 

system [5]. 

 Of the six orbital elements studied in Celestial Mechanics, 

 

1) mean motion (means angular displacement in the considered period) (n)  

2) average distance from the Sun (a)  

3) eccentricity of the orbit (e)  

4) inclination of the orbit ()  

5) longitude of the perihelion ()  

6) longitude of the node () 

 

the first two are considered constant, and the last four were objects of study in 

Stockwell [5], in order to determine their numerical values for each planet. 
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 The reciprocal of the masses which Stockwell used to get to his results 

(masses relative to the mass of the Sun) are described in Table 1 below, 

obtained on page 5 of [5]. The numbers in parentheses in the first column 

correspond to the indexes in roman numerals commonly used in the equations 

of the planetary system, and here transformed into latin numbers. 

 

Planet Mplanet (kg) Msatellites(kg) m-1 = MS / 
(Mp+Ms)

 
Stockwell 

Mercury 
(0) 

3.3022x1023 0 6 023 560.05 4 865 751 -0.1922 

Venus  
(1) 

4.8685x1024 0 408 565.27 390 000 -0.04544 

Earth  
(2) 

5.9736x1024 
 

7.349x1022 328 935.07 368 689 0.1209 

Mars (3) 6.4174x1023 1.26x1016 3 099 541.81 2 680 637 -0.1352 

Jupiter 
(4) 

1.8986x1027 3.9701x1023 1 047.48 1 047, 879 0.0003809 

Saturn 
(5) 

5.6846x1026 1.4051x1023 3 498.24 3 501.6 0.0009605 

Uranus 
(6) 

8.6810x1025 9.1413x1021 22 910.85 24 905 0.08704 

Neptune 
(7) 

1.0243x1026 2.1489x1022  19 415.04 18 780 -0.03271 

     Table 1 - Mass of planets (Mp) and satellites (Ms) of the solar system in kg and  

     reciprocal of the sum in relation to the mass of the Sun (MS = 1.9891x1030 kg).   

  

 𝜇 is the mass parameter adjustment, satisfying 

 

  𝑚𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑚𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟(1 + 𝜇),    (1) 

 

where 

 

  𝑚 =
𝑀𝑝𝑙𝑎𝑛𝑒𝑡

𝑀𝑆𝑢𝑛
,        (2) 

 

i.e., the mass of the planet relative to the mass of the Sun. 

 Other invariable elements of the planets, and also required for calculation 

of variable elements, are shown in table 2 below: 
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Planet Mean motion in one 
julian year (n) 

Mean distance 

from the Sun (𝑎) 

(U.A.) 

Mercury (0) 5 381 016''.200 0 0.387 098 7 

Venus (1) 2 106 641''.438 0 0.723 332 3 

Earth (2) 1 295 977''.440 0 1.000 000 0 

Mars (3) 689 050''.902 3 1.523 687 8 

Jupiter (4) 109 256''.719 0 5.202 798 0 

Saturn (5) 43 996''.127 0 9.538 852 0 

Uranus (6) 15 424''.509 4 19.183 581 0 

Neptune (7) 7 873''.993 0 30.033 860 0 

       Table 2 – Mean motion in one julian year and mean distance from 

                   the Sun to the planets of the solar system, according to Stockwell.  

    

 Current values of the elements listed in table 2 are given in tables 3 and 

4 (obtained from Wikipedia). The mean motion was obtained by the formula 

 

  𝑛 =
365.25×360×60×60

𝑃
,       (3) 

 

where P is the orbital period in days. 

 

Planet Average 
orbital speed 

(km/s) 

Orbital period (d) Mean motion in one 
julian year (’’) 

Mercury (0) 47.87 87.969 1 5 381 025.837 5 

Venus (1) 35.02 224.701 2 106 639.489 8 

Earth (2) 29.78 365.256 363 004 1 295 977.422 8 

Mars (3) 24.077 686.971 689 059.654 6 

Jupiter (4) 13.07 4 331.572 109 282.265 2 

Saturn (5) 9.69 10 759.22 43 996.126 1 

Uranus (6) 6.81 30 799.095 15 402.418 8 

Neptune (7) 5.43 60 190.030 7 864.491 8 

    Table 3 - Speed and orbital period and mean motion of the planets of the solar 

    system, current data. 
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Planet Perihelion (U.A.) Aphelion (U.A.) Mean distance 

from the Sun (𝑎) 

(U.A.) 

Mercury (0) 0.307 499 0.466 697 0.387 098 

Venus (1) 0.718 0.728 0.723 

Earth (2) 0.983 291 34 1.016 713 88 1.000 002 61 

Mars (3) 1.381 497 1.665 861 1.523 679 

Jupiter (4) 4.950 429 5.458 104 5.204 267 

Saturn (5) 9.048 076 35 10.115 958 04 9.582 017 20  

Uranus (6) 18.375 518 63 20.083 305 26 19.229 411 95 

Neptune (7) 29.766 070 95 30.441 252 06 30.103 661 51 

    Table 4 - Perihelion, aphelion and mean distances (major semi-axis) from the Sun 

    to planets of the solar system, current data. 

 

 The values used by Stockwell for constant elements and our respective 

current values are approximately equal, but none of them is exactly the same, 

not even the average distance from Earth to the Sun. Mean motions of the 

Earth and Saturn used by Stockwell, however, are with excellent 

approximations, as did the average distances to the Sun of Mercury, Venus, 

Earth and Mars. Otherwise the approximations can be considered good or 

reasonable.    

 The values of the precession of the perihelion of Mercury obtained due to 

the influence of other planets, with and without adjustment masses, with and 

without satellites, are recorded in table 5 below, rounded to two decimal digits 

after the decimal point. Will be added to each of these values the precession of 

the equinoxes on Earth in relation to the apparent ecliptic, which calculation 

based on Stockwell (for the period 1850-1950) provides 5024’’.749 831  

5024'’.75. The actual calculation of the perihelion advance in relation to 

classical theory uses as reference the value of 5600’’.73 [6]. 



Masses adjustment Satellites mass Precession 
(’’) 

Perihelion 
advance (’’) 

= 0 without satellites 548.69 27.29 

≠ 0 without satellites 543.77 32.21 

≠ 0 with satellites 544.93 31.05 
        Table 5 - Values of the secular precession of the perihelion of Mercury, based 

        in Stockwell. 

 

 The values tabulated above correspond to the 100-year period from 1850 

to 1950 (January 1), and is noted that the advance of the perihelion for the three 

cases is less than the value currently accepted [6]: (43.11 ± 0.45)’’, i.e., 

calculations based on Stockwell are closer to the observed values than the 

current [6], and are also better than the values of Le Verrier [1] and Newcomb 

[7]. 



5 
 

 The longitude (i)  of the perihelion of a planet (i) of the solar system, 

taking into account only the mutual influence of the planets, and according to 

the Celestial Mechanics of Laplace [4], is obtained from the arctangent of the 

ratio between a sum of sines (h(i)) and a sum of cosines (l(i)), such that 

 

  (𝑖) = 𝑎𝑟𝑐𝑡𝑔
ℎ(𝑖)

𝑙(𝑖)
 ,        (4) 

 

where 

 

  ℎ(𝑖) = 𝑒(𝑖)𝑠𝑒𝑛(𝑖)       (5) 

  𝑙(𝑖) = 𝑒(𝑖)𝑐𝑜𝑠(𝑖)       (6) 

  𝑒2 (𝑖) = ℎ2 (𝑖) + 𝑙2 (𝑖)       (7) 

 

with the index (0) referring to Mercury, (1) to Venus, (2) to the Earth, etc., and 

𝑒(𝑖) is the eccentricity of the orbit of the planet (i). 

 The solutions to the various h and l must meet the 16 linear ordinary 

differential equations system of first degree  

   

  {

𝑑ℎ(𝑖)

𝑑𝑡
= {∑ (𝑖, 𝑘)7

𝑘=0,𝑘≠𝑖 }𝑙(𝑖) − ∑ [𝑖, 𝑘]7
𝑘=0,𝑘≠𝑖 𝑙(𝑘)

𝑑𝑙(𝑖)

𝑑𝑡
= −{∑ (𝑖, 𝑘)7

𝑘=0,𝑘≠𝑖 }ℎ(𝑖) + ∑ [𝑖, 𝑘]7
𝑘=0,𝑘≠𝑖 ℎ(𝑘)

  (8) 

   

for i equals 0 to 7, corresponding to the eight planets of the solar system 

(nothing prevents adding up to 8, including Pluto, as it also orbits around the 

sun and was considered planet, but its contribution would be negligible, and the 

contributions of other more distant bodies). 

 The following notation is used above: 

 

  (𝑖, 𝑘) = −
3𝑚(𝑘)𝑛(𝑖)𝑎2(𝑖)𝑎(𝑘)(𝑎(𝑖),𝑎(𝑘))′

4(𝑎2(𝑘)−𝑎2(𝑖))2
=    (9) 

          = −
3𝑚(𝑘)𝑛(𝑖)𝛼2𝑏−1/2

(1)

4(1−𝛼2)2
,      

 

where m is the mass of the planet relative to the Sun's mass, n is the mean 

motion, 𝑎 is the mean distance from the Sun and  

 

  𝛼 =
𝑎(𝑖)

𝑎(𝑘)
.         (10) 

 

(𝑎, 𝑎’), (𝑎, 𝑎’)’, (𝑎, 𝑎’)’’, etc. are the coefficients of the cosine series 

development of 
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  (𝑎2 − 2𝑎𝑎′𝑐𝑜𝑠𝜃 + 𝑎′2)1/2 = (𝑎, 𝑎′) + (𝑎, 𝑎′)′𝑐𝑜𝑠𝜃 +

                       (𝑎, 𝑎′)′′𝑐𝑜𝑠2𝜃 + ⋯ + (𝑎, 𝑎′)(𝑛)𝑐𝑜𝑠𝑛𝜃 + ⋯   (11) 

 

and 

  (𝑎, 𝑎′)′ = 𝑎′𝑏−1/2
(1)

,      (12) 

  𝑏−1/2
(1)

= −
1

3
∙ (1 − 𝛼2)2 ∙ 2𝛼 ∙ {

3

2
+

3

2
∙

3∙5

2∙4
∙ 𝛼2 +

                                       + 
 3∙5

 2∙4
∙

3∙5∙7

2∙4∙6
∙ 𝛼4 + ⋯ }.     (13) 

  

 We also use 

 

  [𝑖, 𝑘] = −
3𝑚(𝑘)𝑛(𝑖)𝛼{(1+𝛼2)𝑏−1/2

(1)
+

1

2
𝛼𝑏−1/2

(0)
}

2(1−𝛼2)2
,    (14) 

 

with 

 

  𝑏−1/2
(0)

= (1 − 𝛼2)2 ∙ 2 ∙ {1 + (
3

2
)

2
∙ 𝛼2 + (

3∙5

2∙4
)

2
∙ 𝛼4 +   

                    + (
3∙5∙7

2∙4∙6
)

2
∙ 𝛼6 + ⋯ }.      (15) 

 

 The values of 𝑏−1/2
(0)

 are positive and 𝑏−1/2
(1)

  are negative, which is easy 

to see, while (i, k) and [i, k] have the same sign equal to the sign of n(i). 

 As an example, Stockwell obtains the following values for the coefficients 

of the disturbance suffered by Mercury: 

 

  (0, 1)  =  (1 +  µ’) ∙ 2’’. 9986729 

  (0, 2)  =  (1 +  µ’’) ∙ 0’’. 8617070 

  (0, 3)  =  (1 +  µ’’’) ∙ 0’’. 0279815     

  (0, 4)  =  (1 +  µ𝐼𝑉) ∙ 1’’. 6028375      (16) 

  (0, 5)  =  (1 +  µ𝑉) ∙ 0’’. 0772642  

  (0, 6)  =  (1 +  µ𝑉𝐼) ∙ 0’’. 0013324    

  (0, 7)  =  (1 +  µ𝑉𝐼𝐼) ∙ 0’’. 0004603  
   
and  

 

  [0, 1]  =  (1 +  µ’) ∙ 1’’. 926868 
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  [0, 2]  =  (1 +  µ’’) ∙ 0’’. 4087579 

  [0, 3]  =  (1 +  µ’’’) ∙ 0’’. 008812816  

  [0, 4]  =  (1 + µ𝐼𝑉) ∙ 0’’. 1489646      (17) 

  [0, 5]  =  (1 + µ𝑉) ∙ 0’’. 00391854 

  [0, 6]  =  (1 + µ𝑉𝐼) ∙ 0’’. 0000336068 

  [0, 7]  =  (1 + µ𝑉𝐼𝐼) ∙ 0’’. 00000741495. 

  

 The sum ∑ (0, 𝑘)7
𝑘=1  is especially important because it represents the 

constant part of the angular velocity of the perihelion of Mercury on the time t in 

julian years, without taking into account part of this variable speed: the 

eccentricities of the planets and the cosines of the differences ((𝑘) − (0)). 

In general we have (Méc Cél, p. 611, eq. [1126]): 

 

  
𝑑(𝑖)

𝑑𝑡
= ∑ (𝑖, 𝑘)7

𝑘=0,𝑘≠𝑖 − ∑ [𝑖, 𝑘]7
𝑘=0,𝑘≠𝑖

𝑒(𝑘)

𝑒(𝑖)
𝑐𝑜𝑠((𝑘) − (𝑖)). 

           (18) 

 

 In the specific case of Mercury, adding the values given in (16) and 

without mass adjustments, we obtain  

 

  ∑ (0, 𝑘)7
𝑘=1 = 5′′. 5702558.      (19) 

 

 With the mass adjustments of table 1 we obtain   

 

  ∑ (0, 𝑘)7
𝑘=1 = 5′′. 5351790.      (20) 

 

 Let us then, as a more accurate estimate of 
𝑑(0)

𝑑𝑡
, calculate (18) for the 

year 1850, taking as reference the eccentricities and initial values of the various 


(k)

 given by Stockwell in your tables (pp. 187-195). 

 

k Planet [0, k] / (1+ µ) µ e  

0 Mercury  -x- -0.1922 0.2056180 75º 07’ 00’’.0 

1 Venus  1’’.926868 -0.04544 0.0068420 129º 28’ 52’’.0 

2 Earth 0’’.4087579  0.1209 0.0167712 100º 21’ 41’’.0 

3 Mars  0’’.008812816 -0.1352 0.0931324 333º 17’ 47’’.8 

4 Jupiter  0’’.1489646   0.0003809 0.0482388 11º 54’ 53’’.1 

5 Saturn  0’’.00391854 0.0009605 0.0559956 90º 06’ 12’’.0 

6 Uranus  0’’.0000336068 0.08704 0.0462149 170º 34’ 17’’.7 
7 Neptune  0’’.00000741495 -0.03271 0.0091739 50º 16’ 38’’.6 

 Table 6 - Values for calculating ∑ [0, 𝑘]7
𝑘=1

𝑒(𝑘)

𝑒(0)
𝑐𝑜𝑠((𝑘) − (0)). 
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 Making the calculation of the second sum we obtain 

 

  ∑ [0, 𝑘]7
𝑘=1

𝑒(𝑘)

𝑒(0) 𝑐𝑜𝑠((𝑘) − (0)) = 0′′. 085547.  (21) 

  

 Subtracting (21) from (20) we obtain for (18), relative to Mercury, the 

value 

 

  
𝑑(0)

𝑑𝑡
(𝑡 = 0) = 5′′. 449632,     (22) 

 

equivalent to 544’’.96 arc per century, close to that obtained in Table 5 

(544’’.93), through a mean value of solutions of the system (8).   

 

 For a more accurate calculation of the value above, recalculating the 

coefficients (0, k) e [0, k] using the actual values of 𝑚, 𝑛, 𝑎, supposedly 

constant, found in tables 1, 3 and 4, respectively, we obtain the following 

results, as shown in table 7. 

 

k Planet  𝑏−1/2
(0)

 −𝑏−1/2
(1)

 (0, k) [0, k] 

1 Venus  0.535405 2.14610541 0.57451806 3.19697528 3.42334861 

2 Earth 0.387097 2.07565165 0.40173925 1.02192663 0.79116803 

3 Mars  0.254055 2.03240427 0.25817105 0.02479246 0.01259726 

4 Jupiter  0.074381 2.00276722 0.07448380 1.60540264 0.23882212 

5 Saturn  0.040398 2.00081610 0.04041487 0.07634219 0.00616819 

6 Uranus  0.020131 2.00020262 0.02013256 0.00143829 0.00005791 

7 Neptune  0.012859 2.00008268 0.01285937 0.00044213 0.00001137 

Table 7 - Values of (0, k) e [0, k] for calculating 
𝑑(0)

𝑑𝑡
 relative to the beginning of 1850. 

 

 Using the coefficients calculated above and the parameters of 

eccentricities and longitudes of the perihelion given in table 6, (20) is 

recalculated as 

 

  ∑ (0, 𝑘)7
𝑘=1 = 5′′. 92731962      (23) 

 

and for (21) we obtain 

 

  ∑ [0, 𝑘]7
𝑘=1

𝑒(𝑘)

𝑒(0) 𝑐𝑜𝑠((𝑘) − (0)) = 0′′. 15466066. (24)  
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 The final result for the angular velocity of the perihelion of Mercury is 

then, according to (18), the difference between (23) and (24), i.e., 

       

  
𝑑(0)

𝑑𝑡
(𝑡 = 0) = 5’’. 77265895     (25) 

 

of arc per year, or approximately 577’’.27 of arc per century. 

 Adding (25) to 50’’.23572 annual precession of the equinoxes calculated 

for 1850, according to Stockwell [5] (pg. 175), we arrive at 56’’.00837895 of arc 

per year, or about 5600’’.84 of arc per century, in accordance with the observed 

value of the secular motion of precession of the perihelion of Mercury, 

according to Weinberg [6]: 5600’’.73 ± 0’’.41. 

 Within the experimental precision, the theoretical value obtained by the 

theory of Stockwell, which is the Newtonian theory the same theory of Laplace, 

is in agreement with the observed value, then it is not true to say that the 

classical, Newtonian theory, is not able to explain the advance of secular 

precession of the perihelion of the planets, and Mercury in particular. Rather, 

the Newton's gravitation explains with surprising accuracy. 

 See that our calculations were based on the year 1850, because it is the 

reference time used by Stockwell. Most likely fixes for the most recent 1950, 

2000, 2014, etc. will reach another overral value to this precession, but must 

proceed in accordance with its observed value of the epoch, their values not 

differing much from one second of arc per century. The precession of the 

equinoxes is the largest component in the calculation of the total value of the 

precession of the perihelion, so it must be the object of careful attention.  

 If for some reason our calculations were not so surprisingly coincident 

with the observational result, they would already be able to show the most 

important: the precession of the perihelion obtained with General Relativity, 

equal to 43’’.03 of arc per century [6], is completely at odds with any 

hypothetical advance of this precession, because this movement (or deviation, 

difference) would be much lower, for example, the one obtained with the 

coefficients of Stockwell, about 31’’.05 arc per century (table 5). However, the 

difference between Newtonian theory and observations obtained here is, 

essentially, zero: theoretical value = value observed, within the measurement 

accuracy. I.e.: General Relativity does not explain the correct value of the 

precession of the perihelion of Mercury. 

 

 We close this letter clarifying that do not exactly reproduce the 

calculations of Stockwell, but we rely on it. Our calculations initially used their 

coefficients and data, we even used all the coefficients obtained for the solution 

of the system (8), given by sums of sines and cosines, but we used our mass 

corrections, the masses of the planets added to the masses of the satellites, 
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and the calculations were made by computer programs in C language, using 

double variables. The average annual motion of the perihelion of Mercury really 

calculated by Stockwell is 5’’.463803 (p. xi, Introduction). 

 In Laplace was found (13) and (15) into infinite series, recalling the 

known series expansions of elliptic integrals, while in Stockwell these 

polynomials in are converted to decimal numbers with up to 7 significant 

digits; 𝑏−1/2
(0)

 be a polynomial of degree 30 and 𝑏−1/2
(1)

 a polynomial of degree 31 

in , indicating clearly that the two series are indeed endless. 

 Laplace tells us that both series only converge for otherwise (and if 

≠) we should calculate (k, i) and [k, i] instead of (i, k) and [i, k], using the 

following relations: 

 

  (𝑖, 𝑘) = (𝑘, 𝑖)
𝑚(𝑘)𝑛(𝑖)𝑎(𝑖)

𝑚(𝑖)𝑛(𝑘)𝑎(𝑘)     (26) 

 

and 

  [𝑖, 𝑘] = [𝑘, 𝑖]
𝑚(𝑘)𝑛(𝑖)𝑎(𝑖)

𝑚(𝑖)𝑛(𝑘)𝑎(𝑘).     (27) 

 

 Furthermore, the important equation (18) we also find in Laplace only, 

not in Stockwell. The system (8) becomes unnecessary when what we want is 

just to calculate the value of the instantaneous temporal variation of  for a 

single time t, instead of the exact value of  for all time t, and have the values 

of the various 
(k)

 and e
(k)

 previously tabulated, as the example shown here. 
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