
The Associahedra and Permutohedra Yet Again

M. D. Sheppeard

Abstract

The associahedra and permutohedra polytopes are redefined as sub-
sets of discrete simplices, associated respectively to the commutative
and noncommutative word monoid.

Although ubiquitous in quantum mathematics, the associahedra and per-
mutohedra polytopes do not really have a definition that is natural for ap-
plications in number theory. We would like a definition that uses a direct
algebraic condition. In [1] Postnikov defines these polytopes by selecting a
certain set of indices associated to integral coordinates for generalised sim-
plices. We reinterpret this definition in the simplest possible terms, so that
the polytopes are defined by a set of divisors for a certain ordinal.

The next section introduces the commutative and noncommutative word
monoids, that define canonical discrete simplices, and then the polytopes are
defined as special subsets of these gadgets.

1 The Combinatorial Word Monoid

A word is a noncommutative monomial in a given alphabet of letters. So
XY is distinguished from Y X. Let n denote the number of letters in the
alphabet and l the length of a given word. For example, XXY X has length
4 in the n = 2 alphabet. The set NC(n, l) contains all length l words in an
alphabet with n letters.

Forgetting the noncommutativity, words are reduced to ordinary mono-
mials in n variables. The set C(n, l) denotes commutative monomials of
length l in n variables. For example, at n = 3 the length 1, 2 and 3 words
sit on triangular simplices
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where the number of noncommutative words at each point is given. Blowing
up to NC(n, l), one obtains a cubic array of points.

The ordinals n and l cover all possible words for alphabets of any length.
A simplex is canonically coordinatised in the integer lattice Zn (we dispense
with brackets and commas) as follows. Since the monomials in a diagram
are of homogeneous degree, the sum of degrees over the letters in the word
is always a constant. As an example, the length two words in three letters
specify six vectors in Z3 that correspond to the degrees of X, Y and Z in
each monomial. These are 200, 020, 002, 110, 101 and 011, where 200 stands
for XX.

Canonical coordinates can be used to turn the noncommutative words in
NC(n, l) into ordinary monomials in a new set of variables, called divisors.
The coordinates now specify the powers of n variables, which we call p1, p2,
· · · pn. For example, at n ≥ 2 the words 000, 001, 011 and 111, along with
their permutations, give the monomials 1, {p1, p2, p3}, {p1p2, p1p3, p2p3} and
p1p2p3 respectively. Thus the ith digit in the string of numbers denotes the
power of pi in the divisor of n = p1p2p3. Then NC(2, 3) is just a list of all
divisors for n = p1p2p3 in N.

We now focus on the diagonal case n = l. These are ordinals of the form

1, p1p2, p1
2p2

2p3
2, p1

3p2
3p3

3p4
3, · · · (2)

At n = 3 the set C(3, 3) is also labeled with Young diagrams, as in figure
1. Divisors extend the commutative monomial points to all of NC(3, 3) by
filling in the little boxes of the Young diagram according to the following
rules. The numbers denote the variable index: i for pi. Every right moving
list of numbers is strictly increasing. For instance, a row of two boxes can
only contain the sequences 12, 13 or 23. After the first row, every subsequent
row is filled with numbers from the first row. And that’s it.

These Young diagrams define a cell decomposition for the Grassmannian
over a finite field F [2]. For example, the figure C(3, 3) denotes the space
Gr(3, 5) of three dimensional planes in F5. The space Gr(2, 4) is given by
six points on a triangle, and this is a finite version of Minkowski space. The
prime variables pi extend the parameter q in the Gaussian polynomials that
count the number of points in Gr(l, n+l−1) for a finite field with q elements.
For example, the polynomial for Gr(2, 4), namely [2]

1 + q + 2q2 + q3 + q4, (3)

is a sum over the six Young diagrams, with p1 and p2 identified to define
q. The term 2q2 corresponds to the two terms of degree two, pi

2 and p1p2.
In this way, the noncommutative space NC(n, l) extends the prime power
spaces to allow for multiple factors pi.

The projective space Gr(1, n) is then a simple simplex at l = 1. Over
the complex number field, the projective space CPn−1 is usually described
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by assigning a torus to each point of a simplex, with tori degenerating to
circles on the edge of a triangle and then to points at the vertices, and so
on. The canonical coordinates give the shape of a torus at each point inside
a simplex, so that the projective space is homogeneous.

2 Associahedra and Permutohedra with Divisors

By definition [3][4], the nth associahedron An has its vertex set specified
by the rooted planar binary trees on n + 1 leaves, with node levels not
distinguished. So A1 is a single point, the unique tree with two leaves, and
A2 is an edge between two vertices, as shown.
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Each edge, in any An, represents a flip through a single node on the tree.
A3 is the pentagon and A4 is a 14 vertex polytope in dimension 3.
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Insisting instead on distinguished node levels within a planar tree, the trees
encode permutations. This extends An to the permutohedron Sn, the poly-
tope in dimension n − 1 given by all permutations of the Zn coordinate
(1, 2, · · · , n). The polytope An−1 can also be mixed with Sn to form the
permutoassociahedron Kn [5]. For example, K2 is a 12-gon in the plane,
obtained by expanding each vertex of the hexagon S3 by an edge A2.

Now we define these polytopes as subsets of simplices from the word
monoid, along the diagonal n = l. The result follows essentially from [1].
The associahedra An live in the commutative triangular simplices, while the
Sn are subsets of the noncommutative monoid cube.

Definition 2.1 The associahedron polytope An is the restriction to the tri-
angular simplex C(n, n) of all divisors of a factor from the central point of
C(n, n).

Example 2.2 The pentagon A3 is the set of divisors of p1
2p2, where the

words p1 and p2 are identified at a single point on C(3, 3), which is the point
XXY in the diagram (1).
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Definition 2.3 The permutohedron polytope Sn is the restriction to non-
commutative words NC(n, n) of all divisors of a factor from the central
point of C(n, n).

Example 2.4 The hexagon S3 splits p1 and p2 for the pentagon above.

Example 2.5 The 14 vertices of A4 are the commutative points of the
divisor set of n = p1

3p2
2p3, which lists the 24 points on S4. The 120 vertex

polytope K4 is built from divisor pairs (Da, Db), where Da is in S4 and Db

comes from the complementary A3 of the number p2p3
2.

Figure 1: C(3, 3) with Young diagrams
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