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Chapter 1. 
Quantum recurrent nets. 
 
Abstract. 
Quantum computing by simulations is based upon similarity between mathematical formalism of quantum 
mechanics and phenomena to be computed.  It exploits a dynamical convergence of several competing 
phenomena to an attractor which can represent an extrenum of a function, an image, a solution to a system 
of ODE, or a stochastic process. In this chapter, a quantum version of recurrent nets (QRN) as an analog 
computing device is discussed.  This concept is introduced by incorporating classical feedback loops into 
conventional quantum networks.  It is shown that the dynamical evolution of such networks, which 
interleave quantum evolution with measurement and reset operations, exhibit novel dynamical properties. 
Moreover, decoherence in quantum recurrent networks is less problematic than in conventional quantum 
network architectures due to the modest phase coherence times needed for network operation. It is proven 
that a hypothetical quantum computer can implement an exponentially larger number of the degrees of 
freedom within the same 
size. 

 
1. 1.1. Introduction.  
          Natural computing is based upon similarity between mathematical formalism of a physical 
phenomenon to be simulated and phenomena to be computed.  Usually it exploits a dynamical convergence 
of a physical process to a certain state, or attractor, so that the measured parameters characterizing this 
attractor can be uniquely identified.  Thus, unlike digital computers which operate via manipulations with 
numbers, in analog computers numbers appear as a result of measurement of physical parameters.  That is 
why the criteria of computational complexity developed for digital algorithms, strictly speaking, are not 
applicable to analog algorithms.  At the same time, analog algorithms have their own criteria of 
“complexity” such as:  the time of convergence to an attractor subject to a prescribed error, the degree of 
stability of the attractor, the pattern of convergence (asymptotic or oscillatory), type of the attractor (static, 
periodic, chaotic, or stochastic), etc. 
 The competition between digital and analog computers, i.e., between computations and 
simulations, has a long history.  During the last fifty years, the theory of computation has been based, 
implicitly, upon classical physics as idealized in the deterministic Turing machine model.  However, 
despite the many successes of digital computers, the existence of so called hard problems has revealed 
limitations of their capabilities, since the computational time for solving such problems grows 
exponentially with the size of the problem. 
 It was well understood that one possible way to fight the “curse” of the combinatorial explosion is 
to enrich digital computers with analog devices.  In contradistinction to a digital computer, which performs 
operations on numbers symbolizing an underlying physical process, an analog computer processes 
information by exploiting physical phenomena directly.  It is this problem solving via direct simulation that 
allows an analog approach to reduce the complexity of the computations significantly.  This idea was 
stressed by Feynman, who demonstrated that the problem of exponential complexity in terms of calculated 
probabilities can be reduced to a problem of polynomial complexity in terms of simulated probabilities.  
Conceptually, a similar approach can be applied to the whole class of NP-complete problems.  Indeed, the 
theory of computational complexity is an attribute of digital approach to computations.  At the same time, 
in principle, one can find such a physical phenomenon whose mathematical description is equivalent to 
those of a particular NP-complete problem.  Then, incorporating this phenomenon into an appropriate 
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analog device, one can simulate the corresponding NP-complete problem.  But is it possible, in general, to 
find a new mathematical formulation for any intractable problem in such a way that it becomes tractable?  
Some experts in computational complexity believe that, in the spirit of the Godel theorem, there always 
exist computational problems such that every mathematical formulation that captures the essence of the 
problem is intractable,.  At this step, we cannot prove or disprove this statement.  
    There is another class of problems for which simulations are superior over computations.  In 
contradistinction to NP-complete problems whose complexity is in an exponentially large number of simple 
computations, these problems have complex and sometimes, partially unknown analytical structure.  
Simulations of solutions of such problems are based upon a black-box approach when unknown 
components of the model are found in the course of a trial-and-error learning process.  A typical 
representative of a corresponding analog device implementing black-box based simulations is a 
neurocomputer where unknown (learnable) parameters are incorporated in the form of synaptic 
interconnections between dynamical units called “neurons”.  However, usually analog computers are 
associated with certain limitations such as the lack of universality, slow performance, and low accuracy, 
and this is the price to be paid for certain advantages of simulations.  A partial success in development of a 
universal analog device is associated with neurocomputers which are based upon massively parallel 
adaptive dynamical systems modeled on the general features of biological neural networks that are intended 
to interact with the object of the real world in the same way the biological systems do.  However, the 
capacity of the neurocomputers is roughly proportional to the size of the apparatus, and that limits actual 
power significantly. 
 A second way to fight a curse of dimension is to utilize a non-deterministic approach to 
computations.  This approach is associated with the Monte Carlo method introduced by N.C. Metropolis 
and S.M. Ulam in 1940.  The idea of this method is based upon the relationships between the probabilistic 
characteristics of certain stochastic processes and solutions to some deterministic problems such as values 
of integrals, solutions to differential equations, etc.  The strength of the method is that its error does not 
depend on the number of variables in the problem, and therefore, if applicable, it breaks the curse of 
dimension.  The effectiveness of the Monte-Carlo approach is inversely proportional to the smoothness 
parameter that characterizes the degree of correlation within the input data.  However, the Monte-Carlo 
method is not the only way to apply nondeterminism for computations.  There is a class of so-called 
randomized algorithms that are effective for combinatorial problems.  In general, a randomized strategy for 
this kind of problem is useful when there are many ways in which an algorithm can proceed, but it is 
difficult to determine a way that is guaranteed to be good.  In particular, if the benefits of good choices 
outweigh the costs of bad choices, a random selection of good and bad choices can yield a good algorithm. 
 In general, the theory of computational complexity proves that polynomial time nondeterministic 
algorithms are more powerful than polynomial time deterministic ones. However, the main limitation of the 
whole non-deterministic approach is in the generation of random numbers:  the generators are slow and not 
always reliable (i.e., the sequence of numbers that they produce may harbor hidden correlations that no 
truly random sequence would possess).    That is why the concept of a quantum computer became so 
attractive:  its analog nature is based upon physical simulations of quantum probabilities, and at the same 
time, it is universal (at least for modeling physical world). 
 Although the development of the quantum-mechanical device is still in progress, a new quantum 
theory of computations has been founded, C.Williams, 1997.  This theory suggests that there is a second 
fundamental advantage of the hypothetical quantum computer which is based upon the wave properties of 
quantum probabilities:  a single quantum computer can follow many distinct computational paths all at the 
same time and produce a final output depending on the interference of all of them.  This particular property 
opened up a new chain of algorithms that solve in polynomial time such hard problems as factorization and 
discrete log, i.e., the problems that are believed to be intractable on any classical computer. 
In order to clarify the connection between quantum algorithms and combinatorial optimization, consider n 
binary variables ;1,0...;,..., 21 == in xxxxx  and combine them into larger number of variables as all possible 
products of n old variables: 

etcxxxxxxxxxy mmn ,,...,,...... 122121 =⊗⊗⊗=      (I.1.1) 

The number of these new variables is  nN 2=  .  In many practical applications, a function to be optimized 
is defined at a set of the new variables.  For instance, in the course of a spacecraft design, the optimal 
placement of sensors requires to minimize the cost function which depends upon n2  values of y, since each 
of n assigned places can be equipped or not equipped by a sensor.  Since the number of possible 
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assignments grows exponentially with the number of placements, it appears that the time required to solve 
this problem must also grow exponentially (in the worst case) even if a single computation of each of n2  
values of the cost function is trivial.  Actually it is this property which makes the problems of combinatorial 
optimization intractable by classical computing.   
 There is a striking similarity between the structure of combinatorial problems and some special 
properties of quantum evolution, namely, the property of the direct-product-decomposability.  This 
property follows from the fact that if two unitary matrices 1U and 2U  are solutions to the Schrödinger 
equation, then their tensor product 21 UU ⊗  will be also the solution to it.  Therefore, with an input of n 
binary variables of the type x, one can obtain n2    variables y  as an output in one computational run.  In 
other words, the transition from n  basic variables x to n2   combinatorial variables y is carried out by the 
laws of nature, and that is the natural foundation of quantum computing. 
Actually the transition from x to  y is carried out by n  of 2 by 2 identity matrices )(iI  as following: 

nnnn ii
n

ijijjj xIIy ...
)()1(

... 1111
...∑=        (I.1.1.2) 

Replacing identity matrices by non-identical unitary matrices )(iS  one finds a new variable 
njjz ...1

  which 
is combined of weighted sums of all the components of the variable y, and that is due to another 
fundamental property of quantum mechanics:  the interference of probabilities that follows from the 
Schrödinger equation.  
 If the matrices )(iS   are chosen such that the variable z is equal to the cost function, then the 
computation is accomplished:  the output contains all the n2  values of the cost function.  However, in 
order to find the optimal value of the combinatorial variable 0yy = , one has to impose an additional 

constraint upon the matrices )(iS  , namely:  the weight coefficient of 0y  must dominate over other weight 
coefficients in order to detect this optimal value in a few number of measurements, and this constraint is, 
probably, the toughest.  Hence quantum computing does not allow iterations, feedbacks, or any other types 
of control over the computational process:  one must get the solution at once, or he does not get it at all. 
 Thus, there are at least two areas where the quantum computer is expected to be superior over the 
classical one:  quantum mechanics (due to simulation of quantum probabilities), and some specific 
combinatorial problems linked to operation research (due to interference of probabilities, ditect-product-
decomposability, and entanglement.  
 In this chapter an attempt is made to combine the power of quantum computing and the dynamical 
complexity of neural nets.  There are at least three reasons for such combinations. Firstly, it will represent a 
universal analog device with a built-in random number generator. Secondly, its capacity will be 
exponentially larger than those of a classical neurocomputer due to the superposition and entanglement 
effects. Thirdly, it will introduce iterations in quantum computing. The main challenge of the approach is in 
reconciliation of linear reversible quantum evolution and nonlinear irreversible dynamics of neural nets. 
     This chapter introduces a new dynamical paradigm:  quantum recurrent nets (QRN). There are 
remarkably few papers in which quantum natural computing is discussed.  The first one, Cerny 1993, 
introduces a hypothetical quantum device (a slot machine) for solving a traveling salesman problem.  As 
shown by the author, such a device, although intellectually appealing, requires an exponentially large 
number of measurements to get the right answer.  Another one, M.Zak 2005, represents an attempt to 
exploit combinatorial properties of tensor product decomposability of unitary evolution of many-particle 
quantum systems for simulating solutions to NP-complete problems, the reinforcement and selection of the 
desired solution being executed by quantum resonance; although the implementability of the approach is 
still in question, the potential difficulties are not associated with the NP-completeness of the problem. It 
will be discussed in the next chapter of this book.  
1.1.2. Neural net as a dynamical system. 
A neural net as a nonlinear dissipative dynamical system can be represented by the following set of ODE: 

0),( >+−= ∑ ij
j

ijiii xTxx τστ       (I.1.2.1) 

where ix  are state variables, or mean soma potentials, characterizing the neuron activities,  
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ijT are constant control parameters representing the weights of synaptic interconnections, iτ  are suitable 

time constants, and )(⋅σ  is a sigmoid function having a saturated non linearity (usually xx βσ tanh)( =  
where 0>= constβ  is an additional control parameter). 
 An invariant characterizing the local dissipativity of the system (1) is expressed explicitly via its 
parameters: 

)
cosh

1(1 2∑∑ +−=
jij

ii

i i xT
Tdivx β

τ
     (I.1.2.2) 

 A necessary (but not sufficient) condition that the system (1) has attractors is that there are some 
domains in phase space where the invariant (2) is negative. 
If the matrix ijT  is symmetric 

ijT = jiT          (I.1.2.3) 
then equation (1) can be presented in the form of a gradient system, and therefore it can have only static 
attractors.  In the basin of a static attractor, the invariant (2) must be negative.  
 Since the system (1) is nonlinear, it can have more than one attractor; consequently, in some 
domains of phase space, the invariant (2) may be positive or zero. Equations (1) present the neural net in its 
"natural" form in the sense that ix and ijT correspond to physical parameters:  neuron potentials and 
synaptic interconnections, respectively.  However, it is important to emphasize that the relationship 
between the invariants of the "vector" iu  and the "tensor" ijT  are not preserved by the coordinate 
transformation, i.e., equation (1) does not possess an invariant tensor structure.  Consequently, the column 

iu  and the matrix ijT   cannot be treated as a vector and tensor, respectively. 
 In most applications, the neural nets performance is associated with convergence to attractors 
(pattern recognition, optimization, decision making, control, associative memory, generalization, etc.).  The 
locations of attractors and their basins in phase space can be prescribed by an appropriate choice of the 
synaptic weights ijT , i.e., by solving inverse dynamical problems. However, since dimensionality of neural 

nets is usually very high (in biological systems it is of order of 10
11

 with the number of synaptic 
interconnections of the order of 10

15
), the straightforward analytical approach can be very expensive and 

time consuming.   An alternative way to select synaptic weights in order to do specific tasks was borrowed 
from biological systems.  It is based upon iterative adjustments of ijT  as a result of comparison of the net 
output with known correct answers (supervised learning) or as a result of creating of new categories from 
the correlations of the input data when correct answers are not known (unsupervised learning).  Actually 
the procedure of learning is implemented by another dynamical system with the state variables  ijT   which 
converges to certain attractors representing the desired synaptic weights. 
 Equation (1) represents a so called continuously updated neural net.  Its discrete version is 
modeled by a corresponding contracting nonlinear map whose dynamical behavior, in principle, is similar 
to those of Eq. (1).  In the simplest form such a map can be written in a McCulloch-Pitts form  
(J. Hertz,1991): 

)(sgn)1( txTtx jiji ∑=+        (I.1.2.4) 

where the sign function plays the role of the sigmoid function. 
 By replacing sgn in Eq.(4) with a stochastic rule: 

)()1( txTStx jiji ∑=+         (I.1.2.5) 

1+=S with probability )( jij xTf ∑       (I.1.2.6) 

1−=S with probability )(1 jij xTf ∑−  
one arrives at a stochastic version of neural nets, while the actual implementation of the stochastic rule (6) 
is still to be based upon a random number generator. 
The basic limitation of deterministic or stochastic classical neurocomputers is in their restricted capacity 
which is proportional to the size of the computer.  This limitation becomes obvious when neurocomputer is 
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compared with a human brain:  there are 10
11

 of parallel units in a human brain while  neural chips made so 
far contain of the order of 104 units, which is too few for most practical applications, (J. Hertz,1991). 
I.1.3. Quantum model of evolution. 
A state of a quantum system is described by a special kind of time dependent vector ψ > with complex 
components called amplitudes: 

>=ψ|}...{ 10 naaa        (I.1.3.1) 
If unobserved, the state evolution is governed by the Schrödinger equation: 

l
l

kl
k aH
dt
dai ∑=        (I.1.3.2) 

which is linear and reversible. 
Here klH is the Hamiltonian of the system, JSi 34100545.1,1 −×=−=   . 
The solution of Eq. (2) can be written in the following form: 

*)}0(),...0({)}(),...({ 00 Uaatata nn =      (I.1.3.3) 
where U is a unitary matrix uniquely defined by the Hamiltonian: 

IUUeU iHt == − *,/        (I.1.3.4)    
After m equal time steps Δt 

m
nn Uaatmatma *)}0(),...0({)}(),...({ 00 =ΔΔ                    (I.1.3.5) 

the transformation of the amplitudes formally looks like those of the transition probabilities in Markov 
chains.  However, there is a fundamental difference between these two processes:  in Eq. (5) the 
probabilities are represented not by the amplitudes, but by squares of their modules: 

}||,...|{| 22
0 naap =        (I.1.3.6) 

and therefore, the unitary matrix U is not a transition probability matrix. 
It turns out that this difference is the source of so called quantum interference which makes quantum 
computing so attractive.  Indeed, due to interference of quantum probabilities: 

21
2

21 || ppaap +≠+=        (I.1.3.7) 

each element of a new vector )( tmai Δ  in Eq. (5) will appear with the probability 2|| ia   which includes all 
the combinations of the amplitudes of the previous vector. 
 
I.1.4. Quantum Collapse and Sigmoid Function. 
As mentioned above, neural nets have two universal features:  dissipativity and nonlinearity.  Due to 
dissipativity, a neural net can converge to an attractor and this convergence is accompanied by a loss of 
information.  But such a loss is healthy:  because of it, a neural net filters out insignificant features of a 
pattern vector while preserving only the invariants which characterizes its belonging to a certain class of 
patterns.  These invariants are stored in the attractor, and therefore, the process of convergence performs 
generalization:  two different patterns which have the same invariants will converge to the same attractor.  
Obviously, this convergence is irreversible. The nonlinearity increases the neural net capacity:  it provides 
many different attractors including static, periodic, chaotic and erogdic, and that allows one to store 
simultaneously many different patterns. Both dissipativity and nonlinearity are implemented in neural nets 
by the sigmoid (or squashing) function discussed in Section 2.  It is important to emphasize that the only 
qualitative properties of the sigmoid function are those which are important for the neural net performance, 
but not any specific forms of this function.  Can we find a qualitative analog of a sigmoid function in 
quantum mechanics?  Fortunately, yes:  it is so called quantum collapse which occurs as a result of 
quantum measurements.  Indeed, the result of any quantum measurement is always one of the eigenvalues 
of the operator corresponding to the observable being measured.  In other words, a measurement maps a 
state vector of the amplitudes (3.1) into an eigenstate vector 

}00...1...00{}...{ 10 →naaa                                    (I.1.4.1) 

                              i↑     

while the probability that this will be the ith eigenvector is: 
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2|| ii ap =          (I.1.4.2)  
The operation (2) is nonlinear, dissipative, and irreversible, and it can play the role of a natural “quantum” 
sigmoid function. 
I.1.5. QRN Architectures. 
Let us introduce the following sequence of transformations for the state vector (3.1): 

>+=>→>→ )1(||})0(|{)0(|)0(| 1 tUU ψψσψψ      (I.1.5.1)    
which is a formal representation of Eq.(4.1)) with 1σ  denoting a “quantum” sigmoid function. 
In order to continue this sequence, we have to reset the quantum device considering the resulting eigenstate 
as a new input.  Then one arrives at the following neural net: 

nitaUta jiji ...2.1)},({)1( 1 ==+ ∑σ      (I.1.5.2)  

which has the form similar to Eq.(2.5). The curly brackets are intended to emphasize that 1σ  is to be taken 
as a measurement operation with the effect similar to those of a sigmoid function in classical neural 
networks (Fig. 1). 

                    
                              Figure 1. The simplest architecture of quantum neural net. 

 
However, there are two significant differences between the quantum (5.2) and classical (2.5) neural nets. 
Firstly, in Eq. (5.2) the randomness appears in the form of quantum measurements as a result of the 
probabilistic nature of the quantum mechanics, while in (2.5) a special device generating random numbers 
is required. Secondly, if the dimension of the classical matrix ijT is NN × , then within the same space one 

can arrange the unitary matrix U (or the Hamiltonian H) of dimension NN 22 ×  exploiting the quantum 
entanglement and direct product decomposability of the Schrödinger equation (see Eq. (1.1). One should 
notice that each non-diagonal element of the matrix H may consist of two independent components:  real 
and imaginary.  The only constraint imposed upon these elements is that H is the Hermitian matrix, i.e.,  

jiij HH =          (I.1.5.3)  

and therefore, the nn×  Hermitian matrix has 2n  independent components. 
So far the architecture of the neural net (5.2) was based upon one measurement per each run of the quantum 
device.  However, in general, one can repeat each run for l times nl ≤  collecting l independent 
measurements.  Then, instead of the mapping (4.1), one arrives at the following best estimate of the new 
state vector: 

...}1...0...1...0{}...{ 0 ll
aa n →                      (I.1.5.4)  

                          
1i

↑        
li

↑  

while the probability that the new state vector has non-zero ik
th  component is 

2|| ikik ap =          (I.1.5.5)    

Denoting the sigmoid function corresponding to the mapping (5.4) as lσ , one can rewrite Eq. (5.2) in the 
following form: 
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nitaUta jijli ...2.1)},({)1( ==+ ∑σ      (I.1.5.6) 
The next step in complexity of the ORN architecture can be obtained if one introduces several quantum 
devices with synchronized measurements and resets: 

1
)1()1()1( ...2.1)},({)1(

21
nitaUta jijlli ==+ ∑σ                    (I.1.5.7)     

2
)2()2()2( ...2.1)},({)1(

12
nitaUta jijlli ≠=+ ∑σ     (I.1.5.8)    

Here the sigmoid functions 
21ll

σ    and
12 ll

σ , map the state vectors into a weighted mixtures of the 
measurements: 
 

||
}...{ )2(

12
)1(

11

)2(
12

)1(
11)1()1(

1
21

21

ll

ll
n

aaaa

aaaa
aa

+

+
→                                (I.1.5.9)       

 

||
}...{ )2(

22
)1(

21

)2(
22

)1(
21)2()2(

1
21

21

ll

ll
n

aaaa

aaaa
aa

+

+
→       (I.1.5.10)   

where )1(
1l
a and )2(

2l
a are the result of measurements presented in the form (4), and 211211 ,, aaa and 22a    

are constants. 
Thus, Eqs. (7) and (8) evolve independently during the quantum regime, i.e., in between two consequtive 
measurements; however, during the measurements and resets they are coupled via the Eqs. (9) and (10). It 
is easy to calculate that the neural nets (2), (6) and (7), (8) operate with patterns whose dimensions are 

))(1(),)(1(),)(1(, 222111 lnnnlnnnlnnnn −−−−−− , respectively. 
      In a more general architecture, one can have K-parallel quantum devices iU with il  consequtive 
measurements iM for each of them (i=1,2...k), see Fig. 2. 
 

 
                            Figure 2.  The k-Parallel Quantum Neural Network Architecture 

 
I.1.6. Maximum Likelihood Dynamics. 
     Let us turn to the simplest version of a quantum neural net (5.2), Fig. 1. As pointed out above, its 
performance is non-deterministic in a sense that each independent run of Eqs. (5.2) may lead to a different 
trajectory.  However, in order to understand better the nonlinear structure of Eq. (5.2), we will introduce the 



 8 

best estimate, or the maximum likelihood trajectory by replacing the highest probability term in the output 
state by one.  Choosing, for simplicity, a unitary matrix with real components: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−−

−

−

=

661628.0525334.0433058.0314219.0
394003.0832118.0144341.0362639.0
568555.00518717.0801066.0179855.0
289405.017004.0387195.0858726.0

U   I.1.6.1)  

one can verify that any initial state which is sufficiently close to the state }0001{  will be attracted to it, and 
therefore, the eigenstate }0001{   is a static attractor.  In the same way one can find other static attractors, 
for instance 

etc},1100{
2
1},0010{},0100{},1000{                    (I.1.6.2) 

Another unitary matrix 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−

−

−−

=

259309.0756383.0600537.0
618349.0347627.070484.0
741892.0554112.0377565.0

U     (I.1.6.3) 

produces periodic attractors: 
etc}100{}001{}010{}100{ →→→                      (I.1.6.4)      

 Thus, relatively simple unitary matrices (1) and (3) within the framework of the quantum neural 
net (5.2) or (5.6), allows one to store several different patterns, namely: static patterns and periodically 
oscillating patterns.  This means that in terms of the maximum likelihood dynamics, the quantum neural net 
behaves as a typical nonlinear system.  However, the maximum likelihood dynamics cannot be identified 
with a deterministic dynamics.  Indeed, if one runs Eq. (5.6) several times, all the solutions may be 
different from each other, so that with a small probability a pattern may converge to a “wrong” attractor; 
moreover, a pattern may wander between all five attractors performing a new stochastic paradigm.  Strictly 
speaking such a “leak” from the deterministic performance of the maximum likelihood dynamics is a 
source of errors in the performance of a neural net.  However, in many cases when neural net is expected to 
display certain flexibility by escaping a prescribed paradigm, this leak may create a useful emerging 
behavior. 
        In order to evaluate deviations from the maximum likelihood solution, one has to turn to the 
probabilistic description of solutions to Eqs. (5.2) and (5.6). 
I.1.7. Evolution of probabilities. 
 Let us take another look at Eq. (5.2).  Actually it performs a mapping of an thi  eigenvector into an 
thj   eigenvector: 

}0...010...00{}0...010...00{ →                   (I.1.7.1)  

            i↑                            j↑  
The probability of the transition (1) is uniquely defined by the unitary matrix U: 

1,||
1

2 == ∑
=

n

i
ijjiij pUp        (I.1.7.2)      

and therefore the matrix |||| ijp  plays the role of the transition matrix in a generalized random walk which 
is represented by the chain of mapping (1). 
     Thus, the probabilistic performance of Eq. (5.2) has remarkable features:  it is quantum (in a sense of the 
interference of probabilities) in between two consecutive measurements, and it is classical in description of 
the sequence of mapping (1). Applying the transition probability matrix (2) and starting, for example, with 
eigenstate }0...10{ , one obtains the following sequence of the probability vectors: 
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etc
pp

pp

n

nnn

};...{
...
............

...
}0...10{};0...10{ 11

1

1

1111

10 ππππ =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

==                 (I.1.7.3)        

An  thi  component of the vector i
mm ei ππ .,  expresses the probability that the system is in the ith  

eigenstate after m steps. As follows from Eqs. (3), the evolution of probabilities is a linear stochastic 
process, although each particular realization of the solution to Eq. (5.2) evolves nonlinearly, and one of 
such realization is the maximum likelihood solution considered in the previous section.  In this context, the 
probability distribution over different particular realizations can be taken as a measure of possible 
deviations from the best estimate solution. However, the stochastic process (3) as an ensemble of particular 
realizations, has its own invariant characteristics which can be expressed independently on these 
realizations.  One of such characteristics is the probability )(m

ijf    that the transition from the eigenstate i to 

the eigenstate j is performed in m steps.  This characteristic is expressed via the following recursive 
relationships, M. Bartlett, 1956: 

....

,
)1()2()3()1()1()()(

)1()2()2()1()1(

jj
n

ij
n

jjij
n

jjij
m

ij
m

ij

ijijijijijijij

pfpfpfpf

pfpfppf
−−− −−−=

−===
    (I.1.7.4) 

If 

1
1

)( <∑
∞

=m

m
ijf          (I.1.7.5)      

then the process initially in the eigenstate i may never reach the eigenstate j. 

If  1
1

)( =∑
∞

=m

m
ijf          (I.1.7.6) 

then the thi    eigenstate is a recurrent state, i.e., it can be visited more than once.  In partiicular, if 
 
  1=iip                                                                               (I.1.7.7)  
this recurrent state is an absorbing one:  the process will never leave it once it enters. 
 From the viewpoint of neural net performance, any absorbing state represents a deterministic static 
attractor without a possibility of “leaks.”  In this context, a recurrent, but not absorbing state can be 
associated with a periodic or an aperiodic (chaotic) attractor.  To be more precise, an eigenstate I has a 
period  0)1( )( => m

iipifττ  whenever m is not divisible byτ , and τ    is the largest 
integer with this property.  The eigenstate is aperiodic 
 if τ =1        (I.1,7.8)                                                                                         
Another invariant characteristic which can be exploited for categorization and generalization is reducibility, 
i.e., partitioning of the states of a Markov chain into several disjoint classes in which motion is trapped.  
Indeed, each hierarchy of such classes can be used as a set of filters which are passed by a pattern before it 
arrives at the smallest irreducible class whose all states are recurrent. For the purpose of evaluation of 
deviations (or “leaks”) from the maximum likelihood solution, long-run properties of the evolution of 
probabilities (3) are important.  Some of these properties are known from theory of Markov chains, namely:  

for any irreducible erogodic Markov chain the limit )(m
ijp   exists and it is independent of I, .e.,  

∞→= matp i
m

ij π)(lim                   (I.1.7.9)         
while 

ii
j

k

j
jij

k

i
ijj kjp

µ
πππππ

1,1,,...1,0,,0
0

====> ∑∑
==

  (I.1.7.10)     

Here iiµ is the expected recurrence time 
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∞<+= ∑
≠

li
jl
ijii p µµ 1         (I.1.7.11)    

The definition of ergodicity of a Markov chain is based upon the conditions for aperiodicity (8) and 
positive recurrence (9), while the condition for irreducibility requires existence of a value of m not 

dependent upon i and j for which )(m
ijp >0 for i and j. The convergence of the evolution (3) to a stationary 

stochastic process suggests additional tools for information processing.  Indeed, such a process for n-
dimensional eigenstates can be uniquely defined by n statistical invariants (for instance, by first n 
moments) which are calculated by summations over time rather than over the ensemble, and for that a 
single run of the quantum net (5.2) is sufficient.  Hence, triggered by a simple eigenstate, a prescribed by n-
invariants stochastic process can be retrieved and displayed for the purposes of Monte-Carlo computations, 
for modelling and prediction of behavior of stochastic systems, etc. 
Continuing analysis of evolution of probability, let us introduce the following difference equation 

niptt i

n

i
iij

n

j
ji ,...2,1,0,1,)()(

11

=≥==+ ∑∑
==

πππτπ                    (I.1.7.12)        

It should be noticed that the vector ),...( 1 nπππ = as well as the stochastic matrix  ijp   exist only in an 
abstract Euclidean space:  they never appear explicitly in physical space.  The evolution (12) is also 
irreversible, but it is linear and deterministic.   
 The only way to reconstruct the probability vector )(tπ  is to utilize the measurement results for 
the vector a(t).  In general case, many different realizations of Eq. (1) are required for that purpose.  
However, if the condition (5) holds, the ergodic attractor ∞=ππ  can be found from the only one 
realization due to the ergodicity of the stochastic process.  The ergodic attractor ∞π  can be found 
analytically from the steady-state equations: 

0,1,1,1,
111

===== ∑∑∑
==

∞∞

=

∞
iji

n

j
ij

n

i
ij

n

j
iji ppp ππππ          (I.1.7.13) 

This system of n+1 equations with respect to n unknowns ni ,...2,1(=∞π  has a unique solution. 
 As an example, consider a two-state case (n=2): 

∞∞∞∞∞∞ =+=+ 22221121221111 , ππππππ pppp                                                         (I.1.7.14) 

Utilizing the constraints in Eqs. (13) one obtains: 

)(2
1,

)(2
1

2211

11
2

2211

22
1 pp

p
pp

p
+−

−
=

+−
−

= ∞∞ ππ      (I.1.7.15) 

   Hence on the first sight, there are infinite numbers of unitary matrices iju  which provide the same 

ergodic attractor.  However, such a redundancy is illusive since the fact that the stochastic matrix ijp   has 

been derived from the unitary matrix iju   impose a very severe restriction upon ijp :  not only the sum of 
each row, but also the sum of each column is equal to one, i.e., now in addition to the constrain in  Eqs. 
(13), an additional constraint 

1
1

=∑
=

n

i
ijp                (I.1.7.16) 

                                                                                                             
is imposed upon the stochastic matrix. This makes this matrix doubly stochastic that always leads to an 
ergodic attractor with uniform distribution of probabilities.  Obviously such a property significantly reduces 
the usefulness of the Quantum recurrent nen (QRN).  However, as will be shown below, by slight change of 
the QRN architecture, the restriction (16) can be removed. 
I.1.8. Multivariate ONR. 
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 In the previous section we have analyzed the simplest quantum neural net whose probabilistic 
performance was represented by a single-variable stochastic process equivalent to generalized random 
walk.  In this section we will turn to multi-variable stochastic process and start with the two-measurement 
architecture.  Instead of Eq.(14) now we have the following mapping: 

}0...01...01...00{
2
1}0...01...01...00{

2
1

2121 jjii →                      (I.1.8.1) 

i.e.,                        2121 JJII +→+                        (I.1.8.2) 
  
where 121 ,, JII   and 2J   are the eigenstates with the unit 1 is at the ththth jii 121 ,,  and thj2    places, 
respectively.  Then the transitional probability of the mappings: 

2
121 ||

2
1)(

2111
1

21 ijij
j

ii UUJIIp +=→+                          (I.1.8.3) 

2
221 ||

2
1)(

2111
2

21 ijij
j

ii UUJIIp +=→+                           (I.1.8.4                                                                                 

Since these mapping result from two independent measurements, the joint transitional probability for the 
mapping (1) is 

22
2121 ||||

2
1)(

22122111
21

21 ijijijij
jj

ii UUUUJJIIp ++=+→+                         (I.1.8.5) 

One can verify that 

,1
1

21
=∑

=

n

j

j
iip ,1

21

21
21

=∑
=

n

jjj

jj
iip               (I.1.8.6)  

It should be emphasized that the input patterns I interfere, i.e., their probabilities are added according to the 
quantum laws since they are subjected to a unitary transformation in the quantum device.  On the contrary, 
the output patterns J do not interfere because they are obtained as a result of two independent 
measurements. As mentioned above, Eq. (5) expresses the joint transition probabilities for two stochastic 
processes  

11 JI →   and  22 JI →                                 (I.1.8.7) 
which are coupled via the quantum interference. At the same time, each of the stochastic processes (5) 
considered separately has the transition probabilities following from Eq. (7.2), and by comparing Eqs. (7.2) 
and Eq. (5), one can see the effect of quantum interference for input patterns. 
 It is interesting to notice that although the probabilities in Eqs. (5)  have a tensor structure, strictly 
speaking they are not tensors.  Indeed, if one refers the Hamiltonian H, and therefore the unitary matrix U 
to a different coordinate system, the transformations of the probabilities (5) will be different from those 
required for tensors.  Nevertheless, one can still formally apply the chain rule for evolution of transitional 
probabilities, for instance: 

etcppQQJJIIp qqjjjjiiqqii 212121212121
)( 212121 =+→+→+                                (I.1.8.8) 

Eqs. (5) is easily generalized to the case of l measurements nl ≤     : 
etcppp

llllll qqjjjjiiqqii .................. 111111
=                       

(I.1.8.9) 

2

1 1
...... ||1
11 ∏ ∑

= =

=
l l

ijljjii U
l

p
ll

α β
βα

                       

(I.1.8.10) 
Now the evolution in physical space, instead of Eq. (I.5.2)), is described by the following: 

nitaUta jijli ...2.1)},({)( ==+ ∑στ                                                           (I.1.8.11) 

where lσ  is the l-measurements operator. 

  Obviously, the evolution of the state vector ia  is more “random” than those of Eq. (I.5.2) since the 
corresponding probability distribution depends upon l variables. 
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 Eq. (11) can be included in a system with interference inputs and independent outputs as a generalization 
of the system (5.7),(5.8). 
I.1.9. QRN with input interference. 
In order to remove the restriction (7.16), let us turn to the architecture shown in Fig. 1 and assume that the 
result of the measurement, i.e., a unit vector }0...010...00{)( =tam  is combined with an arbitrary 
complex (interference) vector, Fig. 3. 
 

 
Figure 3. QRN with input interference. 

 
is combined with an arbitrary complex vector m:  

},...{ 1 nmmm =          (I.1.9.1) 
such that 

222
1 ...)1...(

1,])([)(
ni

m
mmm

ccmtata
+++

=+=     (I.1.9.2) 

Then the transition probability matrix becomes 

|...)1...(|

|...)1(...|
222

1

2
11

ni

njnijij
ij

mmm

mUmUmU
p

+++

+++
=                    (I.1.9.3) 

Thus, now the structure of the transition probability matrix ijp  can be controlled by the interference vector 

m. 
       Eq. (3) is derived for a one-dimensional stochastic process, but its generalization to l-dimensional case 
is straight-forward. 
I.1.10. More complex archtectures.  
In order to clarify the more complex architectures of (QRN), for instance, such as those given by Eqs. (5.9) 
and (5.10), turn to Eq. (8.5), and consider the tensor 

2121 jjiip   .  By simple manipulation of indices one 
obtains: 

21212121 iijjjjiip πππ =         (I.1.10.1) 
     
The products 

21 jj ππ  and 
21 ii ππ  represent the components of the direct product of two vectors   21 ππ ⊗  

and therefore, Eq. (1) can be rewritten as: 

tt p ][][ 211221 ππππ τ ⊗=⊗ +        (I.1.10.2) 

where 12p   is the tensor with the components 
2121 jjiip  , and 21ππ   represents probability vectors for two 

different stochastic processes coupled via quantum interference (see Eq. (8.5)). 
 In order to understand the physical meaning of Eq. (2), start with a simpler case when two 
stochastic processes 21ππ   are considered separately.  Then each vector evolves according to the following 
equation: 
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)()( tpt j
j
ii πτπ =+         (I.1.10.3) 

Moreover, if these processes are coupled in a “quantum” sense, one arrives at a simultaneous nonlinear 

system: 

)()(
1`1

)1( tpt jjii πτπ =+        (I.1.10.4)     

)()(
222

)2( tpt jjii πτπ =+        (I.1.10.5)      

It should be emphasized that the matrices 
11 ji

p   
22 ji

p   are not constant:  they depend both upon the 

components of  1π and 2π  (see Eq. (8.5)).  (This dependence is expressed by the mixed terms 

21 jjU and
12 jjU ).  Obviously, the vectors 1π  and 2π  now represent the conditional probabilities. 

     Thus, due to the quantum interference, the stochastic vectors 1π  (given 2π  ) and 2π   (given 1π  ) 

evolve nonlinearly.   However, the direct product 21 ππ ⊗  which can be associated with the joint 
probability, evolve linearly according to Eq. (8.5).  (We should notice again that for more complex 
architectures of the type (8.10), the joint probability may not exist).  Such a result is not surprising:  as we 
saw above, even for the simplest architecture (5.2), the maximum likelihood (deterministic) solution evolve 
nonlinearly, while the probability of the process evolve linearly.  Analogously, in complex architectures, 
both maximum liklihood and conditional probability processes evolve nonlinearly, but the joint 
probabilities evolve linearly. 

Eq. (2) can be generalized for  l-measurement architectures as following 

tlltl p ]...[]...[ 21,...2,121 ππππππ τ ⊗⊗⊗=⊗⊗⊗ +     (I.1.10.6) 

I.1.11. Non-Markovian processes. 
      The quantum neural nets (5.2) or (5.6), with a slight modification, can generate non-Markovian 
processes that are “more deterministic” because of higher correlations between values of the vector ia  at 
different times, i.e., between )2(),(),( ττ −− tatata iii , etc. Indeed, let us assume that each new 
measurement is combined with the l previous measurements (instead of l repeated measurements).  Then 
Eq. (8.10) will express the joint distribution of, )2(),(),( ττ −− tatata iii etc. The evolution of these 
probabilities is described by the equation following from (10.6): 

tl

t

ltttp
lttt

])1([...)2()([
](...()([

,...2,1 τπτπτπ

τπτππ τ

+−⊗⊗−⊗−=

=−⊗⊗−⊗ +                                                   (I.1.11.1) 

Thus, instead of l-dimensional Markov process in (10.9), now we have a one-dimensional non-Markovian 
process of the lth order. 
    By combining  1l  new measurements with 2l  previous measurements, one can generate an 1l -

dimensional non-Markovian process of the thl2   order.   

I.1.12. Nonlinear QRN. 
    So far all the stochastic processes considered above were linear.  Now let us assume that along with the 
Eq. (5.2) that is implemented by quantum device, we implement (in a classical way) the associated 
probability equation (10.6).  At this point these two equations are not coupled yet.  Now turning to Eqs. 
(9.1)-(9.3), assume that the role of the interference vector m is played by the probability vector π .  Then 
Eqs. (5.2) and (10.6) take the form: 

nitaUta jiji ...2.1)},({)1( 1 ==+ ∑σ      (I.1.12.1) 

)()( tpt jiji πτπ ∑=+ ,     i=1,2,…n      (I.1.12.2)  

where Cta ni }]...{}0...010...00[{)( 21 πππ+=                                                                           (I.1.12.3)  
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222
1 ...)1...(

1

ni
C

πππ ++++
=                      (I.1.12.4) 

|...)1...(|

|...)1(...|
222

1

2
11

ni

njijj
ij

ni
UUU

p
πππ

πππ

++++

+++
=                       (I.1.12.5) 

and they are coupled.  Moreover, the probability evolution (2) becomes nonlinear since the matrix ijp  
depends upon the probability vectorπ .  
Remark. One can associate Eq. (1) with the equation of motion in physical space, and Eq. (2) – with the Liouville equation describing 
the evolution of an initial randomness in a probability (virtual) space. In QNR architecture, Eq. (1) is always nonlinear (due to 
quantum collapse), while Eq. (2) is linear unless it is coupled with Eq. (1) via the feedback (3). Therefore, one arrives at two 
fundamentally different dynamical topologies of QRN: the first one is linked to Newtonian physics where equation of motion is never 
coupled with the corresponding Liouville equation, and the second one can be linked to quantum physics (in the Madelung version of 
the Schrödinger equation) where the Hamilton-Jacobi equation is coupled with the corresponding Liouville equation by the quantum 
potential. In the next part of this book we will exploit the second type of dynamical topology, and we will call it quantum-inspired 
(iQ) since, in general, the feedback between the equation of motion and the Liouville equation will be different from the quantum 
potential.      
I.1.13. Spontaneous self-organization.  

In this section we will demonstrate a relation of non-linear QRN considered above to a concept of a 
spontaneous self-organization as a component of life and intelligence. As shown in section 7, a linear QRN 
eventually approaches an attractor in probability space (see Eq. (I.1.7.15) that represents a stationary 
stochastic process, and this attractor does not depends upon initial conditions. Therefore, from the 
viewpoint of information processing, this attractor performs generalization by placing all possible entry 
patterns in the same class. Let us ask now the following question:  can the system (7.14) change its 
evolution, and consequently, its limit distribution, without any external “help”?  The formal answer is 
definitely positive.  Indeed, if the transition matrix depends upon the current probability distribution 
                                        )(πpp =       (I.1.13.1) 
then the evolution (7.14) becomes nonlinear, and it may have many different scenarios depending upon the 
initial state 0π . In particular case (7.12), it can “overcome” the second law of thermodynamics decreasing 
its final entropy by using only the “internal” resources.  The last conclusion illuminates the Schrödinger’s 
statement that ‘life is to create order in the disordered environment against the second law of 
thermodynamics”.  Indeed, suppose that the selected unitary matrix is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

11
11

2
1U         (I.1.13.2) 

Then the corresponding transition probability matrix in Eq. (7.12), according to Eq. (7.2) will be doubly-
stochastic: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2/12/1
2/12/1

p         (I.1.13.3) 

and the stochastic process (7.12) is already in its thermodynamics limit (3), i.e.,     
2/121 ==ππ          (I.1.13.4) 

Let us assume that the objective of the system is to approach the deterministic state 
0,1 21 == ππ          (I.1.13.5) 

without help from outside.  In order to do that, the system should adapt a feedback (1) in the form: 
1,2),,( 21121 =−== aaaaa π       (I.1.13.6) 

Then, according to Eqs. (7.2), the new transition probability matrix  will be: 

122 1
2
1

2
1

11
+−

=
ππ

πp       
122

)1(

1
2
1

2
1

12
+−

−
=

ππ

πp                                          

22
)1(

2
1

2
1

21
+

+
=

π

πp                     
22
)1(

2
1

2
1

22
+

−
=

π

πp                     (I.1.13.7) 

Hence, the evolution of the probability 1π now can be presented as: 



 15 

21
)(

11
)(

1
)1(

1 )1( pp nnn πππ −+=+       (I.1.13.8) 

in which 11p and 22p  are substituted from Eqs. (7). 
    It is easily verifiable that 

0,1 21 == ∞∞ ππ         (I.1.13.9) 
i.e., the objective is achieved due to the “internal” feedback (6). 
As follows from Eqs.(5) and (9), due to the built-in feedback (6) and without any external effort, the system 
moved from the state of maximum entropy to the state of minimum entropy, and that violates the second 
law of thermodynamics. This means that such a system does not belong to physical world: it is neither a 
Newtonian nor a quantum one. But to what world does it belong? Let us recall again the Schrödinger 
statement (Schrödinger. 1945): “life is to create order in the disordered environment against the second law 
of thermodynamics”. That gives a hint for exploiting the effect of self-organization for modeling some 
aspects of life, and we return to this subject in the second part of this book in connection with quantum-
inspired computing. The application of QRN-based self-organization model to common sense decision 
making process has been introduced in Zak,M., 2000. In the second part of this book, based upon the 
paradigm of spontaneous self-organization, a new class of dynamical systems called quantum-inspired (iQ), 
or self-supervised  will be introduced. It will be shown that these systems are neither Newtonian nor 
quantum (although they have a quantum topology), and that they demonstrate properties similar to those of 
intelligent systems.   
I.1.14. Summary.  
 There are two broad areas in which classical recurrent nets become very effective:  The associative 
memory and optimization.  In this section we will present a brief description of additional advantages that 
can be expected from QRN as a generalization of classical neural nets. 
     The problem of associative memory is formulated as following:  store a set of q n-dimensional patterns 

niqi ,...2,1;,...2,1( ==ηξ η  as a dynamical attractor; if a new pattern iζ  presented as an input is 

sufficiently close to a particular pattern ηξ i
~   , i.e., it belongs to the basin of the corresponding attractor, it 

will trigger a dynamical process which eventually converges to the sample pattern ηξ i
~ . From the viewpoint 

of information processing, such a convergence can be interpreted not only as an associative memory, but 
also as a pattern recognition, identification, classification etc.  However, the most important part of this 
process which distinguishes neural nets from other computational tools is generalization.  Indeed, the 
convergence of the solution to the attractor is a dissipative process:  it is accompanied by the loss of 
unnecessary information.  Only invariants that characterize the belonging of a pattern to a certain class 
survives this loss, and they are represented by the attractor.   
    The fundamental problem in associative memory is to find such a synaptic interconnections ijT (see 
Eq.(2.1)), or, in case of a quantum implementation, the Hamiltonian H, that provides a prescribed number 
of attractors of certain type and at certain locations.  
   In optimization performance the problem is inverse:  the matrix ijT   (or ijH ) is given, and the neural net 
must converge to an attractor which represent a minimum to a certain function (or functional) formulated in 
terms of the matrices  ijT  or ijH . 
     There are several advantages that can be expected from quantum implementation of recurrent nets.  
Firstly, since the dimension of the unitary matrix n can be exponentially larger within the same space had it 
been implemented by a quantum device, the capacity of quantum neural nets in terms of the number of 
patterns stored as well as their dimensions can be exponentially larger too. 
    Secondly, QRN have a new class of attractors representing different stochastic processes, which in terms 
of associated memory, can store complex behaviors of biological and engineering systems, or in terms of 
optimization, to minimize a functional whose formulation includes statistical invariants. 
   The details of ORN performance in learning, optimization, associative memory, as well as in generation 
of stochastic processes can be found in Zak, M.,1998, 1999. 
     In this chapter the attention was focused on the most remarkable property of nonlinear QRN that is 
associated with the spontaneous self-organization as a possible bridge to model intelligent behavior. It is 
important to emphasize that the architecture of that ORN includes a built-in feedback from the probability 
evolution to the evolution of the state vector, and that leads to such a non-Newtonian property as transition 
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from a disorder to the order without any external interference. In the next part of the book, this property 
will play a fundamental role in quantum-inspired models. 
    Another unique property of QRN is based upon quantum interference of probabilities.  Due to this 
interference, the stored patterns acquire a logical structure in a sense that each combination of patterns has 
a qualitatively new meaning in the same way in which combinations of letters forming words do.  This 
property has a very interesting philosophical consequence.  Indeed, it was always difficult to understand 
how biological neural nets can learn patterns of external world without any preliminary structure built-in to 
their synaptic interconnections.  The experience with artificial neural nets shows that training without a 
preliminary structure is exponentially longer than those with a structure, and that poses the following 
question:  who created the “first” structure in biological neural nets which provides the ability to learn and 
select useful properties in polynomial time?  In other words, can natural selection act without a “creator”?  
The QRN may give a positive answer to this question: the logical structure of synaptic interconnections can 
be imposed by natural laws of physics, and in particular, by quantum mechanics.  Hence, if biological 
neural nets utilize quantum effects in their performance, they can learn the model of the external world, 
including its logical structure, in polynomial time without any preliminary structure. More details on that 
subject are presented in the next chapter. 
 
 
Chapter I.2. 
Quantum model of emerging grammars 
 
Give me a laundry list and I’ll set it to music. 
G.A.Rossini. 
 
Abstract. 
 
In this Chapter, as an application of the theory discussed in the previous Chapter, a special class of QRN 
simulating Markov chains with absorbing states is introduced. The absorbing states are exploited for pattern 
recognition: each class of patterns is attracted to a unique absorbing state. Due to quantum interference of 
patterns, each combination of patterns acquires its own meaning: it is attracted to a certain combination of 
absorbing states which is different from those of individual attractions. This fundamentally new effect can 
be interpreted as formation of a grammar, i.e., a set of rules assigning certain meaning to different 
combinations of patterns. It appears that there exists a class of unitary operators in which each member 
gives rise to a different artificial language with associated grammar.  
 
I.2.1. General remarks. 
One of the oldest and most challenging problems is to understand the process of language formation. In this 
section we will introduce a model of grammar formation based upon a unique property of QRN: the pattern 
interference. Let us assume that we store letters of the alphabet in the form of the corresponding stochastic 
attractors ηξ .  Then if some of these letters, say 

lηη ξξ ...
1

 ., are presented to the QRN simultaneously, their 
processing will be accompanied by quantum interference in such a way that they will converge to a new 
attractor, say l,...2,1ξ .  This new attractor preserves the identities of the letters

lηη ξξ ...
1

, but at the same time, 

it is not a simple sum of these letters.  Moreover, any additonal letter 
1+lη

ξ may create a totally different 

new attractor 1,,...2,1 +llξ .  Actually this phenomenon is similar to formation of words from letters, sentences 
from words, etc.  In other words, the pattern interference creates a grammar by giving different meaning to 
different combinations of letters.  However, although this grammar is imposed by natural laws of quantum 
mechanics, it can be changed.  Indeed, by changing phases of the components ijH  of the Hamiltonian, one 
changes the way in which the patterns interfere and therefore, the “English” grammar can be transformed 
into “French” grammar etc. 
 It should be recalled that the ability to create and understand language is the fundamental property of 
intelligence that distinguishes human from other livings. At this stage, we do not have any evidence that 
Nature exploits this particular quantum phenomenon for emerging grammars, but we do not yet observe 
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any alternative ways either. Therefore it is safe to apply QRN for modeling artificial intelligent agents like 
robots rather than human.   
In this section, based upon a concept of QRN, a new phenomenological formalism for pattern recognition 
and grammar formation is described. 
 I.2.2. Emerging grammar formalism. 
We will start with a QRN that augmented with a classical measurement and quantum reset operation. The 
design of the one-dimensional version of this network is shown in Fig. 3. An initial state, >)0(|ψ , is fed 
into the network, transformed under the action of a unitary operator, U, subjected to a measurement 
indicated by the measurement operator M{ }, and the result of the measurement is used to control the new 
state fed back into the network at the next iteration. One is free to record, duplicate or even monitor the 
sequence of measurement outcomes, as they are all merely bits and hence constitute classical information. 
Moreover, one is free to choose the function used during the reset phase, including the possibility of adding 
no offset state whatsoever. Such flexibility makes the QRN architecture remarkably versatile. To simulate a 
Markov process, it is sufficient to return just the last output state to the next input at each iteration. For a 
proof-of-concept, we will start with the following unitary N-dimensional operator  
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that maps the thi  eigenvector into a thj   eigenvector  
}0...010...00{}0...010...00{ →                     (I.2.2.2) 

             i↑                           j↑  
with the probability 

2|| jiij Up =          (I.2.2.3) 
(See Eq. (1.7.12)) 
Eq. (3) is modified to the following (see Eq. (1.9.3)  

∑

∑

≠

=

++

+

= n

ik
ik

n

k
jikjk

ij

aa

UaU
p

|)1(|

||

22

1

2

       (I.2.2.4)  

if each result of the measurement is combined with an arbitrary offset vector 
}...{| 1 naa>=ʹ′ψ         (I.2.2.5) 

It should be emphasized that the sum of the output vector in (2) and the offset vector (5) is first calculated, 
normalized, and then the corresponding quantum re-entering state is prepared. 
For the purpose of pattern recognition, the offset vector will be chosen as follows: 
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| 21
0ψ       (I.2.2.6) 

 
where i is defned by Eq. (2). 
Now the probability of the mapping (2) performed by the unitary operator U and the offset vector (6) can 
be obtained by combining Eqs. (3) and (4), and the transition matrix for the corresponding Markov chain is 
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This chain has n transient states  ),...2.1( nqTq =  and N-n absorbing states ),...2,1( NnnA ++=γγ and 
therefore, regardless of an initial state, the stochastic process eventually will be trapped in one of the 
absorbing states kA   . However, the probability that it will be a prescribed state γA depends upon the initial 

state. Indeed, as follows from theory of Markov chains, the probability k
qf  of absorption into kA   from 

qT satisfies the system of equations, Feller, W., 1957, 

Nnnknqforfpf k
j

n

j

j
q

k
q ,...2,1;...1,0

1

++===∑
=

 (I.2.2.8) 

Consequently, by appropriate choice of U and >ʹ′0|ψ  in Eqs. (1) and (6), one can divide all the initial states 
into N-n groups such that each state of the group is absorbed (with a sufficiently high probability) into the 
same prescribed state. Such a performance can be interpreted as pattern classification if each eigenvector 
introduced to the QRN is associated with the corresponding patterns. 
We will not go into more mathematical details here in order to focus attention upon formation of an 
artificial language instead. For that purpose, suppose that each run of the quantum device is repeated l times 
while nl ≤  independent measurements are collected and fed back into QRN. Then, instead of mapping 
(2), one arrives at the following: 

lm
l

≤→ },0...0010...010...00{}0...010...010...0{1    (I.2.2.9) 

          
1i

↑    
li

↑                      
1j

↑    
mj

↑  
This corresponds to evolution of k different patterns introduced to QRN simultaneously. 
One can generalize Eq. (4) to the following 
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by considering how each of the recurrent states combined with the offset vector (5) evolves under the 
action of the unitary operator U . Eq. (10) defines the probability of transition from the set of inputs lii ...1  

to the set of outputs mjj ...1 .  If m=l, and the offset vector is expressed by Eq. (6), the transition probability 

matrix lp  can be presented in the form similar to 1p  in Eq.(7) 
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This means that the corresponding l-variate stochastic process has ln  transient states  ),...2,1( l
q nqT =  and 

ll nN −  absorbing states γA , and therefore,  
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Nc different classes. Hence, the total number of pattern combinations that can be classified by 
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       (I.2.2.12) 

Now the performance of the QRN can be given the following interpretation. As soon as the unitary matrix 
U and the offset vector >ʹ′ψ|  are chosen (see Eqs. (1) and (6)), all the transition matrices 

),...2,1( lkpk = are uniquely defined (see Eqs. (4), (7), (10) and (11)). It should be noticed that these 
matrices do not have to be implemented: they exist in an abstract mathematical space being induced by the 
operator U and offset vector >ʹ′ψ| . 
If the only one measurement is fed back (l=1), then the transition matrix (7) manipulates by basic patterns-
eigenstates that can be identified with ``letters'' of an alphabet: by mapping each eigenvector into a 
corresponding class, it assigns a certain meaning to the letter. If l independent measurements are fed back, 

)1( nl ≤< then the transition matrix (11) assigns certain meanings to combinations of letters, i.e., to l-letter 
``words''. In order to understand the rules of these assignments, i.e., the ``grammar'', let us turn to Eq. (10). 
As follows from there, in general 
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i.e., an l-variate stochastic process is not simply the product of  l underlying one-dimensional stochastic 
processes, and the difference 
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expresses the amount of ``novelty'', or new information created by interaction between different patterns 
via quantum interference. Formally Eq. (14) resembles quantum entanglement that is also responsible for 
creation of new information; however, actually this entanglement is not quantum: it is a correlation 
between several classical stochastic processes generated by quantum interference. It should be recalled that 
classical neural nets where patterns are stored at dynamical attractors, do not have a grammar: any 
combination of patterns is meaningless unless their storage is specially arranged, and that would require 
actual implementation of an exponential number of new attractors (see Eq. (12)). 
I.2.3. Dynamical Complexity. 
In this section, we will discuss Shannon and algorithmic complexity of QRN for emerging grammars. 
Although the concept of complexity is well understood intuitively, its strict definition remains an enigma 
since there are many different aspects which can be associated with complexity (the number of interacting 
variables, the degree of instability, the degree of determinism, etc.).  Here we will associate dynamical 
complexity with the degree of unpredictability of the underlying motion.  Then the Shannon entropy 
becomes the most natural measure of dynamical complexity of QRNs: 
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−=  and      nH 2max log∝     (I.2.3.1)   

Let us assume now that the unitary matrix in Eq. (1.1) is composed of a direct product of n  22× unitary 
matrices: 

4/
21 22,... qn

n NUUUU ==⊗⊗⊗=                   (I.2.3.2) 
where the number of independent components in iU  
q = 4n                                                                                                                    (I.2.3.3)    
   
Then the dynamical complexity of QRN becomes exponentially larger (see Eq. (2): 

nnH ∝∝ 2max log        (I.2.3.4) 
although the algorithmic complexity is still expressed by Eq. (3). Thus, QRNs based upon representation 
(1) generate “complexity” in an exponential rate, and therefore the underlying stochastic processes attain 
structure of fractals.  Indeed, as shown in Shroeder, M, 1991, a continuous version of a Markov process 
exhibits self-similar structure down to infinitesimal scales of observation.  Although the Markov processes 
generated by QRNs are finite-dimensional, their scales approaches zero exponentially fast when the 
number of the variables n (see Eq. (5) grows only linearly.  This means that QRN generate “quantum 
fractals” which can be applied to image compression, animation, or for a finite-dimensional representation 
of Weierstrass-type functions which are continuous, but non-differentiable.  In contradistinction to classical 
fractals, quantum fractals are more controllable since their probabilistic structure can be prescribed. 
 Now suppose that we are interested in generating a stochastic process with prescribed probability 
distribution.  Then the algorithmic complexity becomes important:  it will allow us to preserve only q=4n 
(out of nN 2= ) independent characteristics of the distribution (although the stochastic process will be still 
N-dimensional, and its Shannon complexity will be of order of n). 
 The difference between the Shannon and the algorithmic complexities affects the design of the l 
measurements architecture in the following way. Indeed, the input-output relationships require the number 
of mapping (i.e., quantum circuits) which is polynomial in N, i.e., exponential in n. However, if the unitary 
matrix U has a direct-product representation (4) then, as follows from the identity: 

UaaUaUaaUU =⊗=⊗⊗ )()())(( 22112121                                                   (I.1.2.3.5) 
i.e.,    21 aaa ⊗=                                                                                            (I.2.3.6) 
and therefore, not only the size of the unitary matrix U and the state vector a, but also the number of 
mapping circuits for l-measurement architectures become polynomial in n as far as their actual 
implementation is concerned.  In addition to that, in the case (4), n out of l measurements can be performed 
in parallel. 
Eq. (4) is not the only representation of a unitary matrix which preserves its exponential size while utilizing 
only polynomial resources.  Indeed, consider the following combination of matrix products: 
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1

m
n

m
nn UUUUUUU ⊗⊗⊗⊗⊗⊗=        (I.2.3.7) 

Here the number of independent components is: 
mnq 4=               (I.2.3.8) 

while the dimensionality 
mqnN 4/22 ==               (I.2.3.9) 

In Eq. (9), N and q are associated with the Shannon and the algorithmic complexity, respectively. 
Thus, each unitary operator having the structure (1) and supplied with an offset vector of the type (6) 
generates a new grammar. Since the structure (1) is preserved under matrix products, new operators of the 
type (9) represent new grammar. In particular, if the time period of each run of the QRN is increased in q 
times, then the effective unitary operator will be different from the original one and thereby a set of new 
languages can be generated by the same quantum ``hardware''.  In addition to that, Eq. (7) opens up a 
possibility to build a high-dimensional operator U from low-dimensional components of the same structure. 
It is worth mentioning that not every language of the possible set of languages is useful. Indeed, the 
performance of the QRN, and in particular, the assignments of pattern combinations to specific absorbing 
states is probabilistic. It is reasonable to require that for each selected patterns combination, the 
corresponding absorbing probability distribution over all possible states has a well-pronounced preference 
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for a certain state; otherwise a word would lose its stable meaning. (It should be noticed that small 
overlapping of absorbing states is acceptable: it makes the language more colorful by incorporating double-
meaning to some words.) As mentioned earlier, stability of the meaning of the basic patterns, i.e., letters, 
can be achieved by an appropriate choice of the unitary operator (1) and the offset vector based upon 
solutions of Eq. (8). However, as soon as U and >ʹ′0|ψ are fixed, there is no further control over stability of 

words' meaning since all the transition matrices ip  are already predetermined (see Eqs. (10) and (11)). In 
this situation, one can characterize the effectiveness of the language by the ratio ζ  of the number W of 
useful words to the total number of words S 

)2(, nOS
S
W

≈=ζ       (I.2.3.10)   

Hence, in order to maximizeζ , one has to identify such a solution to Eq. (2.8) which simultaneously 
stabilizes the meanings of all the letters as well as most of the words. Obviously, in general, this problem is 
hard. 
4. Examples. 
 In order to demonstrate the existence of effective emerging grammars, consider the following example. 
Suppose that in Eqs. (2.1) and (2.6) are chosen as follows 
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where 43,, aaϕ  are real. 
Then, applying Eq. (2.4) one finds the elements of the transition matrix p (see Eq. (1.7)): 
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As follows from Eq. (2), there are two transient states 1T  and 2T , and two absorbing states, 3A  and 4A . 
Introducing four input patterns 

}0001{|},0010{|},0100{|},1000{| 4321 >=>=>=>= ψψψψ                  (I.2.4.4) 
as well as their images in the probabilistic space 

}0001{|},0010{},0100{},1000{| 4321 ==== ππππ                             (I.2.4.5) 
first one can write down trivial mapping    
   ,1,| 3

3333 =→>→ fAπψ and ,1,| 4
4444 =→>→ fAπψ             (I.2.4.6) 

Other transitions 
,| 311 A→>→πψ ,| 441 A→>→πψ                                   (I.2.4.7) 
,| 322 A→>→πψ and ,| 422 A→>→πψ             (I.2.4.8) 

are more complex, and they can be found from Eq. (2.8): 
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whence 
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Similarly one finds 
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1 , ffff ==        (I.2.4.11) 

Thus, if  

43 aa ≅          (I.2.4.12) 
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the patterns >1|ψ and >2|ψ do not have any meaning; with the same probability they can be absorbed by 
the states 3A  or 4A  . However, if 

43 aa >> or 43 aa <<         (I.2.4.13) 
the same patterns are absorbed by only one state 3A , 4A  and that assigns certain meaning to each of them. 
For mapping combinations of patterns (4), one has to repeat twice each measurement before feeding it 
back. Now the input pattern's combinations will be the following: 

}1010{
2
1||},1100{

2
1|| 31132112 >=>=>=>= ψψψψ    (I.2.4.14) 

but their image in the probabilistic space will be di€erent from (4) 
2112 πππ ⊗=      3113 πππ ⊗=       (I.2.4.15) 

Instead of listing all the 64 elements of the matrix 2p  (see Eqs. (3.11) and (3.12)), we will concentrate 
upon those that will be used in our analysis. First of all 

4,3,0 =≠= iiifpii βααβ     

1=αβ
iip   otherwise. 

4,3,0 =≠= iiifpij βααβ            (I.2.4.16) 

1=αβ
ijp otherwise. 

This means that there are four absorbing states: 433433 ,, AAA and 44A  ; the rest 12 states ( 1312,TT , etc.) are 
transient. Here we will be interested only in the evolution of the pattern's combination >12|ψ  (see Eq. 
(14)) since it is the only one which entangles the patterns >1|ψ and >2|ψ  (see Eq. (4)). (Other 
combinations: >13|ψ >23|ψ etc. are not entangled, and therefore, their evolution can be predicted from the 

previous analysis as a direct products ⊗>13|ψ >13|ψ , ⊗>13|ψ >13|ψ , i.e., it does not have any novelty 
element.) 
Thus, one obtains 
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As follows from the last four equations in (17), there are direct transitions from the pattern combination 
>12|ψ  to the absorbing states. However, in addition to that, there exist many indirect transitions to the 

same states, for instance, ,331312 TTT →→ 441412 TTT →→  , and these transitions include the 

entanglement effect that has maxima at 
2
1

±=ϕ . 

As a result, the pattern combination >12|ψ  acquires a new meaning since it cannot be reduced to the 
direct product of the patterns >1|ψ and >2|ψ . 
The performance of this simple QRN becomes more sophisticated if the elements of the unitary matrix U 
and the component of the offset vector a in Eq. (3.1) are complex numbers. Utilizing the properties (3.7), 
one can represent a unitary operator U in a compressed form gaining exponential dimensionality of U with 
linear resources. 
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I.2.5. Summary. 
Thus,	  it	  has	  been	  demonstrated	  that	  QRN	  is	  capable	  of	  creating	  emerging	  grammars	  by	  assigning	  
different	  meanings	  to	  different	  combinations	  of	  letters.	  The	  paradigm	  is	  based	  upon	  quantum	  
interference	  of	  patterns	  which	  entangles	  the	  corresponding	  Markov	  processes,	  and	  thereby,	  creates	  a	  
new	  meaning	  depending	  upon	  how	  different	  patterns	  interact.	  The	  capacity	  of	  the	  language,	  i.e.,	  the	  
total	  number	  of	  words	  in	  it	  is	  exponential	  in	  n	  where	  n	  is	  dimensionality	  of	  the	  basic	  unitary	  
operator.	  However,	  if	  this	  operator	  is	  presented	  as	  a	  direct	  product,	  then	  the	  number	  of	  words	  can	  be	  
made	  double-‐exponential	  in	  the	  dimensionality.	  
 
 
 
Chapter I.3 
Quantum resonance for  
Simulation NP-complete Problems. 
 
Abstract. 
The mathematical formalism of quantum resonance combined with tensor product decomposability of 
unitary evolutions is mapped onto a class of NP-complete combinatorial problems.  It has been 
demonstrated that nature has polynomial resources for solving NP-complete problems and that may help to 
develop a new strategy for artificial intelligence, as well as to re-evaluate the role of natural selection in 
biological evolution. 
 
I.3.1. Introduction. 
    The previous chapters were focused on combining the power of quantum physics and the dynamical 
complexity of neural nets. The main challenge of the approach was in reconciliation of linear reversible 
quantum evolution and nonlinear irreversible dynamics of neural nets. The attention was focused on those 
aspects of QRN that are related to modeling intelligence, namely: self-organization and formation of 
grammar. In this chapter an attempt is made to simulate another property related to intelligence: 
combinatorial optimization that is the main obstacle to artificial intelligence. It is a well established fact 
that nature exploits combinatorial optimization for natural selection. It is also known that even ants 
collectively solve combinatorial problems (such as the shortest path to food in a labyrinth) more efficiently 
than man-made artificial devices. That is why combinatorial problems are not only the obstacle, but is the 
greatest challenge to artificial intelligence. In this Chapter, a new approach to simulation of NP-complete 
problems is introduced: combinatorial properties of tensor product decomposability of unitary evolution of 
many-particle quantum systems are mapped to solutions of NP-complete problems, while the reinforcement 
and selection of a desired solution is executed by quantum resonance.  
I.3.2. Quantum Resonance. 
      Consider a quantum system characterized by a discrete spectrum of energy eigenstates subject to a 
small perturbing interaction, and let the perturbation be switched on at zero time.  The Hamiltonian of the 
system can be presented as a sum of the time-independent and oscillating components  

∫+=
ω

ωωωξε tdHHH sin)(100                                                (I.3.2.1) 

where 0H and 1H are constant Hermitian  matrices, ω is the frequency of perturbations, and  )(ωξ  is the 
spectral density. 
The probability of the transition from state k to q in the first approximation is proportional to the product, 

D. R. Bates, 1961: 
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Here iϕ  are the eigenstates of 0H : 

.,...2,1,0 njEH jjj == ϕϕ         (I.3.2.3)  

where iE   are the energy eigenvalues,   
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nqkEEa qkkq ,...2,1,, =−=       (I.3.2.4) 
 
and   is the Planck constant. 
The resonance, i.e., a time-proportional growth of the transition probability   occurs when  :qka=ω  

  tHP qkkq )(|| 2
1

* ωξϕϕ∝     (I.3.2.5) 

I.3.3. Combinatorial problems.  
      Combinatorial problems are among the hardest in the theory of computations.  They include a special 
class of so called NP-complete problems which are considered to be intractable by most theoretical 
computer scientists.  A typical representative of this class is a famous traveling-salesman problem (TSP) of 
determining the shortest closed tour that connects a given set of n points on the plane.  As for any of NP-
complete problem, here the algorithm for solution is very simple:  enumerate all the tours, compute their 
lengths, and select the shortest one.  However, the number of tours is proportional to n!  and that leads to 
exponential growth of computational time as a function of the dimensionality n of the problem, and 
therefore, to computational intractability. 
 It should be noticed that, in contradistinction to continuous optimization problems where the 
knowledge about the length of a trajectory is transferred to the neighboring trajectories through the 
gradient, here the gradient does not exist, and there is no alternative to a simple enumeration of tours. 
 The class of NP-complete problems has a very interesting property:  if any single problem 
(including its worse case) can be solved in polynomial time, then every NP-complete problem can be 
solved in polynomial time as well.  But despite that, there is no progress so far in removing a curse of 
combinatorial explosion:  it turns out that if one manages to achieve a polynomial time of computation, 
then the space or energy grow exponentially, i.e., the effect of combinatorial explosion stubbornly 
reappears.  That is why the intractability of NP-complete problems is being observed as a fundamental 
principle of theory of computations which plays the same role as the second law of thermodynamics in 
physics. 
 At the same time, one has to recognize that the theory of computational complexity is an attribute 
of a digital approach to computations, which means that the monster of NP-completeness is a creature of 
the Turing machine.  As an alternative, one can turn to an analog device which replaces digital 
computations by physical simulations.  Indeed, assume that one found such a physical phenomenon whose 
mathematical description is equivalent to that of a particular NP-complete problem.  Then, incorporating 
this phenomenon into an appropriate analog device one can simulate the corresponding NP-complete 
problem.  In this connection it is interesting to note that, at first sight, NP-complete problems are 
fundamentally different from natural phenomena:  they look like man-made puzzles and their formal 
mathematical framework is mapped into decision problems with yes/no solutions.  However, one should 
recall that physical laws can also be stated in a “man-made” form:  The least time (Fermat), the least action 
(in modifications of Hamilton, Lagrange, or Jacobi), and the least constraints (Gauss). 
 In this Chapter we will describe how to map a combinatorial decision problem into the physical 
phenomenon of quantum resonance on a conceptual level, and propose a possible circuit implementation. 
 Let us turn to the property (5) that can be mapped into several computational problems, and, for 
the purpose of illustration, choose the following one:  given m different items to be distributed over n 
places; the cost of a βth item put in a  γth place is  λβ(γ);  in general, the costs (the number of which is nm) can 
be positive or negative (but not zero), and there are no restrictions to how many different items can be put 
at the same place.  Find yes/no answer to the following question:  is there at least one total cost whose 
absolute value falls into an arbitrarily given interval. 
 This problem is typical for optimal design.  Since the cost of a particular distribution is expressed 
by the sum  

n
n

j mNjE ===∑
=

...2,1,
1β

β
γ βλ                   (I.3.3.1) 

classically one has to compute all the mn  sums (1) in order to find is there at least one Eq such that 
   ,;|| 1221 aaaEa q >≤≤     (I.3.3.2) 
where a1 and a2  are arbitrarily prescribed positive numbers. 
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Since costs βγ
βλ can be positive or negative, the absolute value in Eq. (2) represents a global constraint, 

and therefore our problem belongs to the class of so called constraint satisfaction problems that are the 
hardest among other optimization problems.  The constraint (2) prevents one from decomposing the 
solution into smaller-size sub-problems.  It can be shown that this problem is mapped into the partition 
problem, Garrey,M.,1979 , and therefore, it is NP-complete. 
     Now we will demonstrate how this problem can be solved by the quantum device described above in 
one computational step. 
First, let us represent the unitary matrix U0 corresponding to the time-independent Hamiltonian 
   tiHeU 0

0 =       (I.3.3.3) 
as a tensor product of n diagonal unitary matrices of the size mm×  
   ,...210 nUUUU ⊗⊗⊗=                   (I.3.3.4)  
       
This corresponds to the direct sum decomposition of H0 
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where m1  is an mm× unit matrix. 
Here 
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Then the unitary matrix U0  in (4) will be also diagonal 
 and  
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while Ej is expressed by Eq. (2.1). 
 Hence, if one select  )(γ

βλ  in (3) as the costs of an thβ  item put in a thγ  place, then the 
eigenstates  Ej of the Hamiltonian H0 represent costs of all N=nn possible distributions (3). 
 Without loss of generality, one can assume that m=2 since computation of 2n different sums has 
also an exponential computational complexity.  At the same time, this assumption will simplify the 
implementation of the simulation device. 
 Now we have to choose the perturbation of the Hamiltonian, (see Eq. (2.1)). For that purpose 
assume that initially the quantum device is in a certain base state k, whose energy Ek does not belong to the 
interval (2), i.e.,  
    ,||,|| 21 aEoraE kk ><  (I.3.3.8) 
and select )(ωξ  as follows:          
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The only constraint imposed upon the Hamiltonian H1 is that all its out-of-diagonal components are non-
zeros.    Indeed, in this case each element of the matrix (2.5) will have the form:  

.0|||| 2)(
1

2
1

* qkifHH kq
qkqk ≠≠= λλϕϕ    (I.3.3.10) 

and no possible resonance transitions will be missed. 
Here, for the sake of concreteness, the initial state Ek was selected such that: 
    |||| 21 aEaE kk −>−    (I.3.3.11) 
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 Turning to Eq. (2.1) and taking into account Eqs. (2.4) and (2), one concludes that Hamiltonian of 
the system is decomposable only at t=0.  For t>0, the quantum system becomes correlated due to the 
perturbations. 
 Suppose that the given interval a1,a2  contains at least one total cost |Eq| from the set (1), i.e., |Eq|  
satisfies the inequality (2).  Then, according to Eqs. (2.5) and (9), the resonance transition from the initial 
state Ek  to the state Eq (or other states satisfying (2)) will occur with the probability one.  Indeed, in the 
presence of a resonance, the probability for non-resonance transitions is vanishingly small if 10 <<ε  (see 
Eq. (2.1)). 
 However, if the given interval a1,a2  does not contain any costs |Eq|  from the set (1), then 
according to Eqs. (2.5) and (9), there will be no resonance transitions at all, and therefore, with the 
probability one the quantum device will stay in the initial state. 
          A mapping of the combinatorial problems onto tensor decomposability of the Schrödinger equation is 
illustrated in Fig. 4 

   
                Figure 4. Mapping combinatorial optimization to quantum mechanics. 
  
I.3.4. Circuit-based  representation. 
 In this section we will discuss a transformation of the Hamiltonian (2.1) into the form that is 
suitable for a circuit-based implementation of the proposed algorithm. 
Let us represent H1 as a direct product of n identical 22×  matrices: 
  wwwH ⊗⊗⊗= ...1                                                                                   (I.3.4.1) 
where 
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11
11

w                                                                                                   (I.3.4.2)  

One should notice that the direct product (1) is different from the direct product of independent subspaces 
given by a direct sum (see Eq. (3.5)) so that the components (2) do not have a clear physical meaning. In 
other words, Eq. (1) expresses only a formal mathematical representation of the matrix H1. Since the matrix 
w is normal, i.e., w*w=ww*, the following representations are available: 
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where ν and γ are the unitary and diagonal matrices, respectively. 
Now the total Hamiltonian (1) can be rewritten in the following form: 
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As follows from Eq. (4), at t = 0 the system is decomposable into independent subspaces with the 
Hamiltonians )(

0
jH  since 

 .00 == tatHH                                                                        (I.3.4.5)   
However, for t>0 the system is entangled due to the action of the perturbations 1H . 
 One of the effective ways to build a physical system with the Hamiltonian (4) is via the 
corresponding unitary operator.  However, because of time-dependent component of this Hamiltonian, the 
sought unitary matrix is not necessarily an exponent of the Hamiltonian.  In order to circumvent this 
obstacle, we can approximate the time-dependent Hamiltonian 
  ∫+=

ϖ

ωωωξε tdHHH sin)(100                                                             (I.3.4.6) 

with a sequence of piecewise constant Hamiltonians:
 ,...2,1,0,sin)(100 pktdHHHk =Δ+= ∫
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Then the solution to the corresponding Schrödinger equation can be presented as a linear superposition: 
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Selecting ktΔ  sufficiently small 
1−<<Δ ωkt                                                                                                                                 (I.3.4.10) 

one can rewrite Eq. (8) as 
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Here the last term (that is supposed to be small) compensates non-commutability of the matrices ||H0|| and 
||H1||. 
 Substituting Eqs. (4) into Eq. (11) one finds 
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Due to tensor-product-based representation (12) of the original Hamiltonian (2.1), the proposed algorithm 
can be implemented by a circuit of a polynomial complexity.  
   
I.3.5. Summary.     
   Thus, it has been demonstrated how a “man-made” problems of exponential computational complexity 
which is hard to handle by algorithmic methods are solved by exploiting a strongly pronounced physical 
phenomena: quantum resonance. 
 The main advantage of the presented approach is in exponential speedup of solutions to NP-
complete combinatorial problems.  Three fundamental physical phenomena contribute to it:  quantum 
resonance, entanglement, and tensor-product decomposability of the underlying unitary matrix. 
 Quantum resonance allows one to represent all the possible solutions to the problem as a set of 
competing dynamical processes:  energy exchanges between pairs of quantum eigenstates.  The 
mathematical formalism of quantum resonance provides storage for these processes:  the transition matrix 

Pkq (see Eq. (2.2)) where each process is labeled through the corresponding transition probability. 
Quantum entanglement implement the global constraint (2) and 
tensor-product decomposability is a fundamental property of the Schrodinger equation for multi-particle 
systems.  Due to its effect, the number of stored solutions, i.e., the number of transitions matrix Pkq is 
exponentially larger than the number of the input parameters (see Eq. (3.1)) and that is what directly 
contributes into exponential speedup and capacity. 
 In order to make these three physical phenomena work together, one has to choose the 
Hamiltonian of the quantum system such that the optimal solution is the winner in the competition with 
other solutions, i.e., that its transition probability is the largest.  This is achieved by selecting the oscillating 
part of the Hamiltonian in the form of (3.9). 
        It should be emphasized that the solution of one NP-complete problem opens up a way to solve every 
NP-complete problem in polynomial time. 
  Possible implementation of the presented algorithm by a circuit of a polynomial complexity is 
demonstrated. However, one of the greatest challenges of building of quantum computer is controlling or 
removing quantum decoherence. This usually means isolating the system from its environment as the 
slightest interaction with the external world would cause the system to decohere. This effect is irreversible, 
as it is non-unitary, and is usually something that should be highly controlled, if not avoided.  
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