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Abstract

English mathematics Professor, Sir Andrew John Wiles of the University of Cam-
bridge finally and conclusively proved in 1995 Fermat’s Last Theorem which had
for 358 years notoriously resisted all efforts to prove it. Sir Professor Andrew
Wiles’s proof employs very advanced mathematical tools and methods that were
not at all available in the known World during Fermat’s days. Given that Fermat
claimed to have had the ‘truly marvellous’ proof, this fact that the proof only came
after 358 years of repeated failures by many notable mathematicians and that the
proof came from mathematical tools and methods which are far ahead of Fermat’s
time, this has led many to doubt that Fermat actually did possess the ‘truly mar-
vellous’ proof which he claimed to have had. In this short reading, via elementary
arithmetic methods which make use of Pythagoras theorem, we demonstrate con-
clusively that Fermat’s Last Theorem actually yields to our efforts to prove it.

“Arithmetic is where the answer is right and everything is nice and you can look

out of the window and see the blue sky, or the answer is wrong and you have to

start over and try again and see how it comes out this time.”

Carl August Sandburg (1878− 1967)

1. Introduction

The pre-eminent French lawyer and amateur mathematician, the late Advo-
cate – Pierre de Fermat (1607− 1665) in 1637, famously in the margin of a
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copy of the famous book Arithmetica which was written by Diophantus of
Alexandria (∼ 201− 215 AD), wrote:

“It is impossible to separate a cube into two cubes, or a fourth power

into two fourth powers, or in general, any power higher than the sec-

ond, into two like powers. I have discovered a truly marvellous proof

of this, which this margin is too narrow to contain.”

In the parlance of mathematical symbolism, this can be written succinctly
as:

6 ∃ (x, y, z, n) ∈ N
+ : xn + yn = zn for (n > 2), (1)

where the triple (x, y, z) 6= 0, is piecewise coprime, and N+ is the set of all
positive integer numbers. This theorem is classified among the most famous
theorems in all History of Mathematics and prior to 1995, proving it was –
and is; ranked in the Guinness Book of World Records as one of the “most
difficult mathematical problems” known to humanity. Fermat’s Last Theorem
is now a true theorem since it has been proved, but prior to 1995 it was only
a conjecture. Before it was proved in 1995, it is only for historic reasons that
it was known by the title “Fermat’s Last Theorem”.

Rather notoriously, it stood as an unsolved riddle in mathematics for well
over three and half centuries. Many amateur and great mathematicians tried
but failed to prove the conjecture in the intervening years 1637−1995; includ-
ing three of the World’s greatest mathematicians such as Italy’s Leonhard
Euler (1707−1783), France’s Pierre-Simon, marquis de Laplace (1749−1827),
and the celebrated genius and Crown Prince of Mathematics, Germany’s Jo-
hann Carl Friedrich Gauss (1777− 1855), amongst many other notable and
historic figures of mathematics.

Without any doubt, the conjecture or Fermat’s Last Theorem is in-itself –
as it stands as a bare statement, deceptively simple mathematical statement
which any agile 10 year old mathematical prodigy can fathom with relative
ease. Fermat famously – via his bare marginal note; stated he had solved
the riddle around 1637. His claim was discovered some 30 years later, after
his death in 1665, as an overly simple statement in the margin of the famous
copy Arithmetica. Fermat wrote many notes in the margins and most of
these notes were ‘theorems’ he claimed to have solved himself. Some of the
proofs of his assertions were found. For those that were not found, all the
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proofs save for one resisted all intellectually spirited efforts to prove it and
this was the marginal note pertaining the so-called Fermat’s Last Theorem.

This marginal note dubbed Fermat’s Last Theorem, was the last of the
assertions made by Fermat whose proof was needed, and for this reason that
it was the last of Fermat’s statement that stood unproven, it naturally found
itself under the title ‘Fermat’s Last Theorem’. Because all of the many of
Fermat’s assertions were eventually proved, most people believed that this
last assertion must – too; be correct as Fermat had claimed. Few – if any;
doubted the assertion may be false, hence the confidence to call it a theorem.
Simple, the proof Fermat claimed to have had, had to be found!

Did Fermat actually posses the so-called ‘truly marvellous’ proof which
he claimed to have had? This is the question many (see e.g. Cox, 1994) have
justly and rightly asked over the years and this reading makes the temerarious
endeavour to vindicate Fermat, that he very well might have had the ‘truly
marvellous’ proof he claimed to have had and this we accomplish by providing
a proof that employs elementary arithmetic methods that were available in
Fermat’s day.

Surely, there are just reasons to doubt Fermat actually had the proof
and this is so given the great many notable mathematicians that tried and
monumentally failed and as-well, given the number of years it took to find the
first correct proof. The first correct proof was supplied only 358 years later
by the English Professor of mathematics at the University of Cambridge –
Sir Andrew John Wiles (1953−), in 1995 Wiles (1995).

To add salt to injury i.e. add onto the doubts on whether or not Fermat
actually had his so-called ‘truly marvellous’ proof is that Sir Professor An-
drew Wiles’s proof1 employs highly advanced mathematical tools and meth-
ods that were not at all available in the known World during Fermat’s days.
Actually, these tools and methods were invented (discovered) in the relentless
effort to solve this very problem. Herein, we supply a very simple proof of
Fermat’s Last Theorem.

That said, we must hasten to say that, as a difficult mathematical problem
that so far yielded only to the difficult, esoteric and advanced mathematical
tools and methods of Sir Professor Andrew Wiles – Fermat’s Last Theorem,

1The proof by Sir Professor Wiles is well over 100 pages long and consumed about
seven years of his research time. For this notable achievement of solving Fermat’s Last

Theorem, he was Knighted Commander of the Order of the British Empire in 2000 by Her
Majesty Queen Elizabeth (II), and received many other honours around the World.
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as any other difficult mathematical problem in the History of Mathematics,
it has had a record number of incorrect proofs of which the present may
very well be an addition to this long list of incorrect proofs. In the words of
historian of mathematics – Howard Eves Koshy (2001):

“Fermat’s Last Theorem has the peculiar distinction of being the math-

ematical problem for which the greatest number of incorrect proofs have

been published.”

With that in mind, allow us to say, we are confident the proof we supply
herein is water-tight and most certainly correct and that, it will stand the
test of time and experience.

As stated in the ante penultimate above is that, in this rather short
reading, we make the temerarious endeavour to answer this question – of
whether or not Fermat actually possessed the proof he claimed to have had.
This we accomplish by supplying a simple and elementary proof that does
not require any advanced mathematics but mathematics that was available in
the days of Fermat. Sir Professor Andrew Wiles’s acclaimed proof, is at best
very difficult and to the chagrin of they that seek a simpler understanding –
the proof is nothing but highly esoteric. The question thus ‘forever’ hangs in
there to the searching and inquisitive mind: “Did Fermat really possess the
proof he claimed to have had?” The proof that we supply herein leads us to
strongly believe that Fermat might have had the proof and this proof most
certainly employed elementary methods of arithmetics!

2. Pythagorean Triples

The great Euclid (b.300BC) of Alexandria – Egypt; provided a fundamental
formula for generating primitive Pythagorean triples given an arbitrary pair
of positive integers p and q with (p > q) such that (p−q) is odd. The formula
states that the integers X , Y and Z:

X = p2 − q2

Y = 2pq
Z = p2 + q2

, (2)

constituent a primitive Pythagorean triple. A primitive Pythagorean triple
is one in which X , Y and Z are piecewise co-prime. By piecewise co-prime,
we mean that any combination of the triple X , Y and Z has no common
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factor other than unity. Below is the proof that the numbers X, Y and Z do
yield Pythagoras’s formula:

(p2 + q2)
2 ≡ (p2 − q2)

2
+ (2pq)2

⇓ ⇓ ⇓
Z2 = X2 + Y 2

. (3)

Clearly, there are infinitely many primitive Pythagorean triples. Invariably –
this means that, there must exist infinitely many piecewise co-prime triples
(X, Y, Z) ∈ N+ where N+ is the set of all positive integers. An important
fact to note, a fact directly emergent from the foregoing is that all primi-
tive Pythagorean triples yield to Euclid’s formula and further, Euclid’s set
of primitive Pythagorean triples comprises all the primitive Pythagorean
triples that exist in Nature.

3. Lemma

If [(a, b) ∈ N+] such that:

a
√
b = c+ d, (4)

for some numbers (c, d), then, insofar as whether or not
√
b is an integer or

not, there are two conditions, and these are:

1. (
√
b ∈ N+).

2. (
√
b /∈ N+). That is, (

√
b ∈ I+) is an irrational number: I+ is the set

of all positive irrational numbers.

—

1. If, (
√
b ∈ N+), then, one can always find some (c, d) such that [(c, d) ∈

N+].

2. If, (
√
b /∈ N+), then

√
b is a surd – it is an irrational number and

[(c, d) /∈ N+]; and there must exist some [[(c1 < c) & (d1 < d)] ∈ N+]
such that (c = c1

√
b) and (d = d1

√
b) so that (a

√
b = c1

√
b + d1

√
b),

which implies that:

a = (c1 + d1) ∈ N
+. (5)
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While (c1, d1) are not necessarily integers, one can always find some (c1, d1)
such that [(c1, d1) ∈ N+] for as long as [(a > 1) ∈ N+]. The above stated
Lemma §(3) is a self evident truth which is not only necessary but vital and
pivotal for the proof that we now give below. Before that – using this Lemma
§(3), we shall set-up a Theorem that is necessary for this proof.

4. Theorem

For any piecewise coprime triple of integers (x, y, z) each greater than unity
such that z is not a perfect square i.e. (

√
z ∈ I+), the equation:

z2
ℓn = x2 + y2, (6)

admits no solutions for [(n > 2) ∈ O+] for any [(ℓ ≥ 0) ∈ N+].

4.1. Proof

We will prove for two cases, the first of which is for (ℓ = 0) and the second
which is for (ℓ > 0).

4.1.1. Case (ℓ = 0)

As a starting point, we will consider the case (ℓ = 0). When (ℓ = 0), then
(6) becomes:

zn = x2 + y2. (7)

Let us assume that (7) admits a solution for the stated conditions. Since
[(n > 2) ∈ O

+], we can write (n = 2k + 1) where [(k > 0) ∈ N
+]. With

(n = 2k + 1), (6) can be rewritten as:

(

zk
√
z
)2

= x2 + y2. (8)

From the decomposition method used in the method of obtaining Pythagorean
triples presented in §(2), we know that for any [(x, y, z) > 1] we can always
find a pair of positive numbers (p, q) which are not necessarily integers and
these numbers (p, q) are such that:





x
y

zk
√
z



 =





p2 − q2

2pq
p2 + q2



 . (9)
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Given that (
√
z ∈ I+), it follows from the z-component of equation (9)

[i.e., (zk
√
z = p2 + q2)] and from Lemma §(3) that there must exist a

pair of integer numbers (a > b) each greater than unity which are such that

(p2 = a
√
z) and (q2 = b

√
z); from which we obtain that (p =

√

a
√
z) and

(q =
√

b
√
z); and substituting these into (9), we will have:





x
y

zk
√
z



 =





(a− b)
√
z

2
√
a
√
b
√
z

(a+ b)
√
z



 . (10)

Since (
√
z ∈ I+); the x-component of (10) is telling us that x must both

be an integer and an rational number, that is to say, the integer number
(x > 1) must equal the irrational number [(a − b)

√
z] since [x = (a−b)

√
z].

We know very well that this is an impossibility because there does not exist
such a number that is both an integer and an irrational number (or stated
otherwise, a number that is both an integer and non-integer); hence, by way
of contradiction, we conclude that for the conditions investigated here, our
initial supposition that (7) has a solution is wrong, thus the initial statement
for the conditions investigated must certainly be true since its contrary leads
to a clear contradiction.

4.1.2. Case (ℓ > 0)

(a) If for (6) [(ℓ > 0) such that (ℓ− 1 6= 0)], then, (6) can be rewritten as:

(

z2
ℓ−1n

)2

= x2 + y2, (11)

hence (x, y, z2
ℓ−1n) is a primitive Pythagorean triple thus, according to

the method of Pythagorean triples presented in §(2) [∃(p1, q1) ∈ N+ :
(p1 > q1 > 1)], where these integers (p1, q1) are coprime and are such
that [(p1 − q1) ∈ O+]; hence:





x
y

z2
ℓ−1n



 =





p21 − q21
2p1q1
p21 + q21



 . (12)

At this point, we are going to extract the z-component of (12) namely
(z2

ℓ−1n = p21+q21). If (ℓ−1 = 0) for this equation i.e. (z2
ℓ−1n = p21+q21);

then (zn = p21 + q21). Clearly the equation (zn = p21 + q21) is similar to
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(7) which we have shown to have no solution, therefore, it follows that
(zn = p21 + q21) has no solution as-well. However, if (ℓ − 1 > 0), then
the equation (z2

ℓ−1n = p21 + q21) can be rewritten as:

(

z2
ℓ−2n

)2

= p21 + q21 . (13)

(b) If (ℓ − 2 = 0), then, (13) will become (z2n = p21 + q21) and the triple
(p1, q1, z

n) is a primitive Pythagorean triple hence by the method of
Pythagorean triples presented in §(2), we will have:





p1
q1
zn



 =





r21 − s21
2r1s1
r21 + s21



 . (14)

The z-component of (14) namely the equation (zn = r21 + s21) is simi-
lar to (7) which we have shown to have no solution since (

√
z ∈ I+);

therefore, it follows that (zn = p21 + q21) has no solution as-well.

However if (ℓ − 2 > 0), then, the triple (p1, q1, z
2ℓ−2n) is a primitive

Pythagorean triple. We know from the decomposition method used in
the method of obtaining Pythagorean triples presented in §(2), that we
can always find some coprime integer numbers (p2, q2) which are such
that [(p2 < p1, q2 < q1) : (p2 − q2) ∈ O+], such that:





p1
q1

z2
ℓ−2n



 =





p22 − q22
2p2q2
p22 + q22



 . (15)

Again as before, we are going to extract the z-component of (15) namely
(z2

ℓ−2n = p22+q22). If (ℓ−2 = 0) for this equation i.e. (z2
ℓ−2n = p22+q22);

then (zn = p22 + q22). Clearly the equation (zn = p22 + q22) is similar to
(7) which we have shown to have no solution, therefore, it follows that
(zn = p22 + q22) has no solution as-well. However, if (ℓ − 2 6= 0), then
the equation (z2

ℓ−2n = p22 + q22) can be rewritten as:

(

z2
ℓ−3n

)2

= p22 + q22 . (16)

(c) If (ℓ − 2 = 0), then, (16) will become (z2n = p22 + q22) and the triple
(p2, q2, z

n) is a primitive Pythagorean triple hence by the method of
Pythagorean triples presented in §(2), we will have:
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p2
q2
zn



 =





r22 − s22
2r2s2
r22 + s22



 . (17)

The z-component of (17) namely the equation (zn = r22 + s22) is simi-
lar to (7) which we have shown to have no solution since (

√
z ∈ I+);

therefore, it follows that (zn = p22 + q22) has no solution as-well.

However, if (ℓ − 3 > 0), then, the triple (p2, q2, z
2ℓ−3n) is a primitive

Pythagorean triple. We know from the decomposition method used in
the method of obtaining Pythagorean triples presented in §(2), that we
can always find some coprime integer numbers (p3, q3) which are such
that [(p3 < p2, q3 < q2) : (p3 − q3) ∈ O+], such that:





p2
q2

z2
ℓ−2n



 =





p23 − q23
2p3q3
p23 + q23



 . (18)

Again as before, we are going to extract the z-component of (18) namely
(z2

ℓ−3n = p23+q23). If (ℓ−3 = 0) for this equation i.e. (z2
ℓ−3n = p23+q23);

then (zn = p23 + q23). Clearly the equation (zn = p23 + q23) is similar to
(7) which we have shown to have no solution, therefore, it follows that
(zn = p23 + q23) has no solution as-well. However, if (ℓ − 3 > 0), then
the equation (z2

ℓ−3n = p23 + q23) can be rewritten as:

(

z2
ℓ−4n

)2

= p23 + q23 . (19)

(d) At this point we believe that the reader notices that this cycle will
continue up-till that point where (ℓ− j = 0). At each jth stage before
we have (ℓ− j = 0); we obtain the z-component equation which reads:

z2
ℓ−jn = p2j + q2j , (20)

and the integer number (pj > qj > 1) are coprime and are such that
[(pj, qj) ∈ O+] and (pj < pj−1; qj < qj−1). Once (ℓ − j = 0), (20)
becomes:

zn = p2j + q2j . (21)
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At this point, the downward descent can not continue any more since
we have the equation (21) is similar to (7) which we have shown to
have no solution, therefore, it follows that (21) has no solution as-well.

Summary

Since in both cases (ℓ = 0) and (ℓ > 0) we arrive at a clear contradiction,
it therefore follows that contrary to the initial supposition, (6) admits no
integer solutions for all [(n > 2) ∈ O+]. Q.E.D.

4.2. Corollary

A corollary that can be deduced from the x-component of (9) is that the
equation (x = p2−q2), admits no solutions for any coprime triple [{(x, p, q) >
1} ∈ N+] for which (x :

√
x ∈ I+). Stated more formally – the equation:

z = x2 − y2, (22)

admits no solutions for any coprime triple [{(x, y, z) > 1} ∈ N+] for which
(z :

√
z ∈ I+). This fact will become helpfull in the reading Nyambuya

(2014b), when we confront the proof of Beal’s Conjecture via the method of
Pythagorean triples.

5. Fermat’s Proofs for the Case (n = 4)

Fermat was the first to provide a proof for the case (n = 4) which stated
that for all non-zero piecewise coprime triple (x, y, z) ∈ N+, the equation
x4+ y4 = z4 admits no solutions. This proof by Fermat is the only surviving
proof of Fermat’s Last Theorem and as is the case with Euler’s proof for
the case (n = 3), Fermat’s proof makes use of the technique of infinite de-
scent. Further, as is the case with Euler’s proof for (n = 3), Fermat’s proof
is not the only proof possible as other authors have published their indepen-
dent proofs (see e.g. Refs. Gambioli, 1901; Legendre, 1823; Hilbert, 1897;
Lebesgue, 1853; Kronecker, 1901, amongst many others). Even after Sir Pro-
fessor Andrew Wiles’s 1995 breakthrough Wiles (1995), researchers are still
publishing variants of the proof for the case (n = 4) (cf. Grant and Perella,
1999; Dolan, 2011; Barbara, 2007). Below, we present Fermat’s proof.
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The equation x4 + y4 = z4 – with coprime [{(x, y, z) > 1} ∈ N+]; can be
written equivalently as:

Z2 = X4 − Y 4, (23)

where [{(X, Y, Z) > 1} ∈ N+] is a set of coprime numbers; and further, this
equation can be rewritten as:

Z2 = (X2 + Y 2)(X2 − Y 2). (24)

Since X and Y are coprime, the greatest common divisor of (X2 + Y 2) and
(X2 − Y 2) is either 2 (Case A) or 1 (Case B). The theorem is proven sepa-
rately for these two cases.

5.0.1. Case A

In this case, both X and Y can only be odd with Z being even. Since the
coprime triple (X2, Y 2, Z) form a primitive Pythagorean triple (remember
X4 = Y 4 + Z2), they can be decomposed into:

Y 2 = p2 − q2

Z = 2pq
X2 = p2 + q2

(25)

where p and q are coprime integers and (p > q > 1) with [(p − q) ∈ O+].
From (25), it follows that:

(XY )2 = p4 − q4. (26)

In (26) we have produced another solution (p, q,XY ) which is such that
(0 < p < X). By the above argument that solutions cannot be shrunk in-
definitely and as we all know, this is impossible hence, this proves that the
original solution is impossible.

5.0.2. Case B

In this case, the two factors [(X2 + Y 2) and (X2 − Y 2)] are coprime. Since
their product is a square [i.e. (X2+Y 2)(X2−Y 2) = Z2], they must each be
a squares, i.e.:
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p2 = X2 + Y 2

q2 = X2 − Y 2 (27)

The numbers p and q are both odd, since (p2+ q2 = 2X2) is an even number,
and since X and Y cannot both be even. Therefore, the sum and the differ-
ence of p and q are likewise even numbers, one can define integers u and v
as:

u = 1
2
(p+ q)

v = 1
2
(p− q)

(28)

Since p and q are coprime, so are u and v; only and only one of them can
be even. Since (p2 − q2 = 2Y 2), it follows that Y 2 = 2uv, hence, exactly
one of them (u, v) is even. For illustration, let u be even; then the numbers
may be written as u = 2m2 and v = k2. Since (u, v,X) form a primitive
Pythagorean triple, i.e.:

1

2
(p2 + q2) = u2 + v2 = X2 (29)

they can be expressed in terms of smaller integers g and h using Euclid’s
formula

v = g2 − h2

u = 2gh
X = g2 + h2

(30)

Since u = 2m2 = 2gh, and since g and h are coprime, they must be squares
themselves, g = r2 and h = s2. From this we obtain the equation:

v = g2 − h2 = r4 − s4 = k2 (31)

The triple (r, s, k) is another solution to the original equation – albeit, smaller
than the original solution i.e. (0 < g < h < X). Applying the same
procedure to (r, s, k) would produce another solution, still smaller, and so on.
But this is impossible, since natural numbers cannot be shrunk indefinitely.
Therefore, the original solution (X, Y, Z) is impossible.

12



6. Proof of Fermat’s Last Theorem (II)

As with the previous proofs in the presiding chapter, the proof that we are
going to provide of FLT is a proof by contradiction. We assume the state-
ment:

∃ (x > 1, y > 1, z > 1, n) ∈ N
+ : xn + yn = zn, for all (n > 2), (32)

to be true. The triple (x, y, z) is piecewise coprime, the meaning of which is
that the greatest common divisor [gcd()] of this triple or any arbitrary pair
of the triple is unity.

That is, for our proof, by way of contradiction, we assert that there
exists a set of positive integers (x, y, z, n) that satisfies the simple relation
(xn + yn = zn) for all (n > 2). Having made this assumption, if we can show
that just one of the numbers of the quadruplet (x, y, z, n) can not belong
to the set of integers, we will have proved Fermat’s Last Theorem. In our
approach to the problem (proof), we split it into two parts, i.e.:

• Case (I) : This case proves for all powers of [(n > 4) ∈ E+] where
E+ is the set of all positive even integer numbers. The case (n = 4)
is considered to have been proved by Fermat as presented in §(5). Ac-
tually, in-order for us to prove FLT for even indices, the present proof
requires us to make a separate proof for (n = 4). Given that Fermat
did provide a proof for (n = 4) and claimed to have discovered a general
proof for FLT, these simple facts strongly point to the idea that the
proof that we here provide may very well be the proof Fermat claimed
to have discovered.

• Case (II) : This case proves for all powers of [(n > 2) ∈ O+] where
O+ is the set of all positive odd integer numbers.

Since the set [(n > 2) ∈ N
+] contains only odd and even values of n, to prove

that there does not exist an even and odd [(n > 2) ∈ N+] that satisfies (32) is
a proof that there does not exist [(x, y, z, n) ∈ N+ : xn + yn = zn, (n > 2)].
This is a proof of the original statement (1).
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6.1. Case (I): Even Powers of (n > 4)
If [(n > 4) ∈ E+], then we can write (n = 2ℓk) where [(ℓ = 1, 2, 3, 4, . . . etc) ∈
N+] and [(k = 3, 5, 7, . . . etc) ∈ O+] is an odd number greater than two.
With (n = 2ℓk), then, under the given conditions, we know that (32) can be
rewritten as:

x2ℓk + y2
ℓk = z2

ℓk, (33)

and this can further be rewritten as:

(

x2ℓ−1k
)2

+
(

y2
ℓ−1k

)2

=
(

z2
ℓ−1k

)2

, (34)

where (x2ℓ−1k, y2
ℓ−1k, z2

ℓ−1k) is a piecewise coprime triple. As long as (ℓ −
1 ≥ 0), all the members of the piecewise coprime triple (x2ℓ−1k, y2

ℓ−1k, z2
ℓ−1k)

are all positive integers thus, the triple (x2ℓ−1k, y2
ℓ−1k, z2

ℓ−1k), is a primitive
Pythagorean triple.

As is well known from §(2), namely Euclid’s formula for generating prim-
itive Pythagorean triples that, since (x2ℓ−1k, y2

ℓ−1k, z2
ℓ−1k), is a primitive

Pythagorean triple, there must exist a pair of coprime integers (p > q > 1),
which are such that (p1 − q1) is odd, such that:





x2ℓ−1k

y2
ℓ−1k

z2
ℓ−1k



 =





p2 − q2

2pq
p2 + q2



 . (35)

From (35), we extract the z-component of this equation, i.e. (z2
ℓ−1k = p21 +

q21), and we will write this equation as:

z2
ℓ−1k = p2 + q2. (36)

Since z is such that
√
z ∈ I+ or

√
z ∈ N+, we can write z = ζ2

m

where
(m ≥ 0). If

√
z ∈ I+, then (m = 0); and, if

√
z ∈ N+, then (m > 0).

Therefore, substituting z = ζ2
m

into (36), we will have:

ζ2
ℓ+m+1k = p2 + q2. (37)

According to the theorem presented in §(4), equation (37) has no solution. It
therefore follows that we clearly have demonstrated that for [(n > 2) ∈ E+]
the statement (32) can not be true as initially supposed, hence Fermat’s Last
Theorem is true for [(n > 2) ∈ E+].
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6.2. Case (II): Odd Powers of (n > 2)

Now, we have to prove for the case [(n > 2) ∈ O+]. The fact that [(n > 2) ∈
O+], this implies that we can set n = 2k + 1 where k = 2, 3, 4, 5, . . . , etc ⇒
(k > 1) if n is to be greater than 2. With n = 2k + 1, the equation
xn + yn = zn can now be rewritten as x2k+1 + y2k+1 = z2k+1 and this
can further be rewritten as:

(

xk
√
x
)2

+
(

yk
√
y
)2

=
(

zk
√
z
)2

. (38)

The triplet, trio or the three numbers (xk
√
x, yk

√
y, zk

√
z) are not necessarily

integers, thus this triple is not a Pythagorean triple in the traditional parlance
of mathematics. However, this handicap does not stop us (or anyone for that
matter) from finding real numbers (p, q : p > q) which are not necessarily
integers, where these numbers (p, q) are such that:





xk
√
x

yk
√
y

zk
√
z



 =





p2 − q2

2pq
p2 + q2



 . (39)

As in the case for the proof for even powers of (n > 2), our focal point here is
the z-component of (39). For z, we have two and only two cases (conditions)
and these are:

• Case (1): (
√
z ∈ N

+).

• Case (2): (
√
z /∈ N

+). That is,
√
z, is an irrational number.

We will provide proofs for the two cases as stated above.

6.2.1. Case (1): Proof for the Case (
√
z ∈ N

+)

If (
√
z = w ∈ N+), clearly, it follows that (p > q > 1) ∈ N+. If (p, q) ∈ N+,

then (
√
x = u) ∈ N

+ and (
√
y = v) ∈ N

+. From this, it follows that (38) will
now become:

u2(2k+1) + v2(2k+1) = w2(2k+1). (40)

According to the proof we have given in §(6.1) for even n i.e. for (n > 2) ∈
E+, it follows that (40) admits no solutions.
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6.2.2. Case (2): Proof for the Case (
√
z ∈ I+)

In the case where (
√
z ∈ I

+), it follows from Lemma §(3) that for the z-
component of (39), there must exist some (a > b > 1) ∈ N+, such that
(p2 = a

√
z) and (q2 = b

√
z), i.e., (zk

√
z = a

√
z + b

√
z). Thus, from,

(p2 = a
√
z) and (q2 = b

√
z), it follows that (p =

√

a
√
z) and (q =

√

b
√
z).

Substituting all this into (39), we will have:





xk
√
x

yk
√
y

zk
√
z



 =





(a− b)
√
z

2
√
a
√
b
√
z

(a+ b)
√
z



 . (41)

Clearly, from (41), it follows that (
√
x /∈ N

+) because (z ∝ x), that is to say
(z = s2x) for some [(s > 1) ∈ N+]. To see this is not difficult a thing at all.
We know that (xk ∈ N+) but (41) is telling us that [xk = (a−b)

√

z/x]. Since

[(a− b) ∈ N+], for [xk = (a− b)
√

z/x ∈ N+], we must have [
√

z/x = s ∈ N+]
i.e. (z = s2x). This means that x and z share a common factor (s2 > 1), the
meaning of which is that the triple (x, y, z) is not piecewise coprime. Since
our initial assertion runs contrary to our final conclusion, hence, by way of
contradiction, it follows that our initial assertion is wrong as it has lead us
to an illogical conclusion. Hence, for [(x, y, z) ∈ N+] (32) admits no solutions
under the given conditions since the piecewise coprime triple (x, y, z) can not
be piecewise coprime as initially assumed.

Alternatively, since (
√
z = ζ ∈ I+), the z-component of (41) can also be

written as:

ζ2k+1 = p2 + q2. (42)

According to the theorem presented in §(4), equation (42) has no solution
since (ζ ∈ I+) and [(2k+1) ∈ O+]. It therefore follows that for [(x, y, z) ∈ N+]
(32) admits no solutions under the given conditions.

Summary

Combining the two proofs for the case [(n > 2) ∈ O+]; for the sub-cases
(
√
z ∈ N+) and (

√
z ∈ I+), it follows that, equation (32) admits no integer

solutions for any non-zero piecewise coprime triple [(x, y, z) ∈ N+] for all
[(n > 2) ∈ O

+].
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6.3. Summary of the Two Proofs

In §(6.1) and (6.2), we have proved that (32) admits no integer solutions for
any [(x, y, z) > 1] and [(x, y, z) ∈ N+] for all powers of [(n > 2) ∈ E+] and
for all powers (n > 2) ∈ O+. Combining these two proofs, it follows from the
foregoing as stated and outlined at the beginning of this section, that (32)
admits no integer solutions for any [(x, y, z) > 1] and [(x, y, z) ∈ N+] for all
powers of [(n > 2) ∈ N+]. Hence, Fermat’s Last Theorem is here proved in a
simpler, much more general and truly marvellous manner.

7. General Discussion

If the proof we have provided herein stands the test of time and experience,
then, it is without a shred or dot of doubt that Fermat’s claim to have had a
‘truly marvellous ’ proof may very well resonate with truth. Our reasons for
thinking this are justified by the fact that Fermat himself provided a proof
for the case (n = 4). The question is “Why did he provide this proof for
the case (n = 4)?” As in the proof that we have provided, was not Fermat’s
proof for the case (n = 4) part of a general proof for the case [(n > 2) ∈ O+]?
Our proof here requires a separate proof for the case (n = 4) and there-after
a more general proof for (n > 4) is possible. One can not thus rule out that
Fermat provided the proof for the case (n = 4) as part of a more general
proof for the case [(n > 2) ∈ O+].

The second reason for strongly siding with Fermat is that the present
proof employs the method of Pythagorean triples which Fermat knew very
well and he used this in the proof for the case (n = 4). The subtlety in finding
a more general and elegant proof lies in Lemma §(3); a fact that Fermat (as
one of the greatest number theorists) must have known. Off cause, we can
never know for sure whether the present proof is what Fermat had at hand, or
whether his claimed proof contained as flaw. But, with the present proof in
place, it is difficult to now dismiss that Fermat’s claim may very well be true
because our proof employs mathematical tools available in Fermat’s days.

As to ourself – given the present light, we do not want to take away the
fact that ‘Fermat’s claim may very well be true’. He most certainly had the
proof, the problem is that the bare mathematical truth in the form of Lemma
§(3) may not have crossed the minds of mathematicians in search of Fermat’s
claimed proof – it simply was overlooked. Clearly, for any book, the standard
‘margin is [certainly] too narrow ’ to contain the present proof, the meaning
of which is that Fermat was most certainly right in his famous claim.
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Clearly, the problem with the proof is not that it is difficult and only
accessible to the highly esoteric, no! We ourselves (i.e., amateur and sea-
soned mathematicians alike) have made this problem appear very difficult,
highly esoteric and only accessible to the foremost and advanced mathemat-
ical minds. Given that an arithmetic proof is very easy to judge as either
correct or wrong using 16th century arithmetic, few – if any; would believe
that this is possible for one to obtain an arithmetic proof of Fermat’s Last
Theorem. The level difficulty and esoteric nature associated with this prob-
lem has been – until the present reading, placed very high and beyond the
intellectual reach of mortals of modest means. In the reading Nyambuya
(2014a), we have provided an even much simpler proofs of Fermat’s Last
Theorem and as well Beal’s Conjecture.

What could have happened leading to the elevation of this problem to
a point where it came to become one of the most difficult problems in all
History of Mathematics is that – perhaps; the plethora of maiden failures
to provide a proof must have led people to think that this problem must be
very difficult. Failure after failure and especially so by great mathematicians
must then have led to it [Fermat’s Last Theorem] achieving ‘international,
worldwide and historic notoriety’ as a very difficult problem that eluded even
great minds like Euler, Laplace and Gauss. With this kind of background,
certainly, when people approached this problem, they most probably did so
with in mind that it was a very difficult problem probably to be solved by
‘real super geniuses’ and not mortals of modest means e.g. ourself.

If someone told you that a given problem is so difficult, so much that it
has thus far eluded the finest, advanced and most esoteric minds that have
attempted to find its solution, one naturally tries to use higher advanced
methods to prove it. Further, if someone told you that a given problem is so
difficult, so much that it have eluded the finest, advanced and most esoteric
minds that have attempted to find its solution, one naturally is discouraged
from using simple elementary methods to prove it because the feeling one has
is that, if it can be solved via a simple method, surely, advanced minds before
me must have discovered this, thus leading one to try and climb higher than
those before them. If what we have presented stands the test of time and
experience, then, the way we approach difficult problems may need recourse,
especially the way the public media projects and posts the level difficulty
and the supposed esoteric effort required in-order to solve these problems.

Our approach to solving so-called outstanding problems is that one must
not be let down by the public media projections of the level difficult and the
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supposed esoteric effort required in-order to solve the problem. First, as we
climb the ladder of level difficultly, we tackle it [problem] from a level sim-
plicity accessible to the ‘layman’ and step-by-step as we move up the ladder.
To us, we have come to realise that this has helped us in understanding the
problem at a much deeper level. At each level, we make sure we exhaust
‘all’ the possible avenues. As to how one knows they have exhausted all the
possible avenues, this is a difficult question to answer but the most potent
and virile tool for us has been a deep and strong inner intuition, unshak-
able confidence in the solubility of the problem and singular conviction that
victory is certain if one persists.

As we anxiously await the World to pass its judgement on our proof,
effort and work, we must — if this be permitted at this point of closing,
say that, we are confident that – simple as it is or may appear, this proof
is flawless, it will stand the test of time and experience. Further, allow us
to that that, it strongly appears that the great physicist and philosopher –
Albert Einstein (1879 − 1955), was probably right in saying that “Subtle is
the Lord. Malicious He is not.” because in Lemma §(3), there exists deeply
embedded therein, a subtlety that resolves and does away with the malice
and notoriety associated with Fermat’s Last Theorem in a simpler and truly
marvellous and general manner.

8. Conclusion

We hereby put forward the following conclusion:

1. By use of the method of ‘Pythagorean triples’, we have demonstrated that a
solution to Fermat’s Last Theorem exists in the realm of elementary arith-
metic.

2. This proof employs elementary arithmetic tools and methods that were cer-
tainly accessible to Fermat, thus making it highly likely that Fermat’s claim
that he possessed a ‘truly marvellous’ proof may very be true.
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