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Abstract 

Lorentz transformations and special theory of relativity have existed for more than a century and 

mathematics related to them has been used and applied for innumerous times. Relativistic energy and 

relativistic momentum equations have been derived and proven to be conserved if energy/momentum 

transaction is seen from different frames of reference. The set of permissible inertial reference frame 

velocities from where the energy and momentum of a closed system of particles may be observed to be 

conserved forms a ball in the velocity vector space. In this paper we use the existing equations of special 

theory of relativity and Lorentz transformations and the mathematical structure of the observation velocity 

space to prove that the conservation of kinetic energy implies the conservation of momentum. We also 

prove that the conservation of momentum implies the conservation of kinetic energy. We further derive 

many more linearly independent conservation equations directly from the conservation of 

energy/momentum. The derivation of the conservation of kinetic energy from the conservation of 

momentum implies that either potential energy has a momentum thus made of inertial particles or there 

cannot be a net conversion of potential energy to kinetic energy. Furthermore the existence of many 

equations lead to extremely strict form of transfers of energy and momentum. It highly restricts the set of 

states particles in any closed system can assume without changing the overall energy of the system. This 

has a strong impact on the particle mechanics and as an example we show that the relativistic explanation 

of the elastic collision of particles striking each other as used by Einstein in the 1934 two blackboard 

derivation of mass and energy is itself inconsistent and wrong. 

Keywords: Conservation of energy, Conservation of Momentum, Lorentz Transformation, Special Theory 
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1. Introduction 

The conservation of energy and the conservation of momentum are considered two different principles, 

each of them exists independently of the other [1] [2] [3] [4] [5]. In most of the existing models of particle 

interactions and collisions, the conservation of momentum being a part of “principle of inertia” is 

considered a more sacrosanct principle than the conservation of mechanical energy as mechanical energy 

may be converted to some other forms of energy [1] [2] [3] [4] [6]. 

The first authoritative change to the long lasting formulae for kinetic energy was given by Einstein who 

showed equivalence of mass and energy. He and his other contemporary physicist and mathematician came 

up with space-time, energy and momentum transformation as per the new findings about the speed of light 

[7] [8] [9] [10] [11] [12] [13].  

In this article we prove that the conservation of momentum can be derived from the conservation of kinetic 

energy. We also prove that the conservation of momentum implies conservation of kinetic energy. The 

derivation is based on looking at conservation of energy of particles from a continuum of inertial reference 

frames. As per the special theory relativity the conservation of relativistic energy and momentum remains 

valid if seen from any inertial frame of reference moving at a speed less that light [14]. The set of 

observation inertial frames of reference form a continuum of velocities. The topology of the continuum is 

defined only by the velocities so the position of reference frames in the space is irrelevant. A pair of inertial 

reference frames with very close velocities but with a separation of very large distance are very close 

elements in this continuum. As per the special relativity, the energy and momentum conservation is 

consistent across all the inertial reference frames in the continuum. Figure 1 shows the 3D continuum of 

velocities. 

 

Figure 1: Continuum of inertial frames of references of observers as defined by velocities 
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Figure 2: A conserved field in state 𝛼 and 𝛽 where Vx and Vy are velocity components of the continuum of allowed 

inertial reference frames 

Assume an inertial reference frame A in which an observer observes a conserved property F of a closed 

system of particle. Examples of such property are total energy and momentum. Special theory of relativity 

allows any and all inertial frames of reference with velocity less than light relative to A. So any inertial 

frame of reference with velocity 
3( , , )x y zV V V  and ( , , )x y zV V V c is allowed and total energy and 

momentum of a closed system of particles is also conserved for an observer in that inertial reference frame. 

For the ease of illustration assume 2D velocity space with A as origin (0,0) . With A as origin in the velocity 

space there exists allowed inertial frame of references with velocity 
2( ),x yV V  relative to A and

( ),x yV V c . The energy and momentum of a closed system of particles is conserved for the observers in 

all of them. Figure 2 shows a 2D surface plot of a conserved field F as observed by observers in different 

inertial frames of reference. As we can see in the figure 2, if the field is conserved with the change of state 

from α to β, the topology of the field observed by observers in all allowed inertial frames of reference 

remains exactly the same. As the topology of the system remains exactly the same, various derivatives 

along the topology also remain the same, which means conserved. This means that  / , /x yF V F V     

remains same for the states 𝛼 and 𝛽. Same is true for higher order derivatives. It is important to note that 

these derivatives are taken along the topology of the value of the conserved function as observed by 

observer in the allowed inertial reference frames and does not in any way mean the acceleration of the 

system or the reference frames.  

Intuitively it is like different observers in different inertial reference frames sharing their observations with 

a central observer and the central observer plotting the values as a 2D surface. The central observer will 

notice that in the state 𝛼 and 𝛽 the value of the conserved property remains the same and so do the 

derivatives. 

Using the above formulation we given a detailed mathematical derivation of our results in the section 2. In 

the subsection 2.4 we prove conservation of momentum from conservation of kinetic energy for an arbitrary 

dimensional space. In the section 2.5 we prove the conservation of kinetic energy from the conservation of 

momentum. In the section 2.6 we further prove that there exist infinite conservation equation, which 

become finite only in the case if the directional angles are quantized rational numbers. In the finite case the 

conservation quantities form a finite group of roots of unity. In the general case, as the number of equations 

become infinite, any closed system of interaction becomes over-determined.  

In the section 3 we show that even elastic collision of two balls/particles as used by Einstein in two 

blackboard derivation in 1934 comes out to be invalid [15]. 



4 

2. Generic derivation of infinite equations in M dimensions: 

Let’s assume there are n particles in a closed system and there exists a scalar conservation function F, which 

solely depends on the magnitude of the velocity of the particles (we look at states of the system where there 

is no inter particle potential energy). 

Let the velocities of the particles be 1 2{ , ,..., }a a anV V V  in a reference frame A. Let us take a continuum of 

inertial reference frames as a set BC with velocities h w.r.t. to A where h c . Let  h B  BC be a 

frame of reference in the set of inertial reference frames with velocity h w.r.t. A.  Let the resultant velocity 

of the particles in frame of reference  hB be 1 2{ , ,..., }b b bnV V V . Then as per the Lorentz velocity addition 

rule [7] [8] [16]: 

2
2

( ) ( )

2

( 1 / )
1

(1 / )

ak parallel ak perpendicular

bk

ak

V h h c V
V k n

V h c

  
   

 
    … (1) 

2.1 Lemma 1: General conservation in any direction for m-dimensional space 

Statement: Given m-dimensional space with orthonormal basis as 1 2 3{ , , ,..., }me e e e , velocity of frame of 

reference  h B  BC w.r.t. A as qh he   (direction in the qth dimension), velocity of kth particle in 

frame of reference A as ak ak kV V r  (where 1 1 2 2 ...k k k km mr r e r e r e    is the unit vector in the direction 

of akV with 
2 2 2

1 2 ... 1k k kmr r r    ) and a scalar conservation function F, which solely depends on the 

magnitude of velocity bkV , if   
1

, ,
n

bk k ak

k

F V h V


  is conserved then 

 
  2 2

1
0

, ,
1 /

n
bk k ak

qk ak

k bk
h

F V h V
r V c

V










 is also conserved for all 1 q m  . 

Proof: 

Given: 

qh he  

1 1 2 2( ... )ak ak k k km mV V r e r e r e     

We have following: 

ak( )

ak( ) 1 1 2 2 1 1 1 1( ... ... )

parallel ak kq q

perpendicular ak k k kq q kq q km m

ak ak kq

V V r e

V V r e r e r e r e r e

V h V hr

   



      



  … (2) 

Substituting (2) in (1) the resultant velocity in the frame of reference B simplifies to be: 
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2 2

1 1 2 2 1 1 1 1

2

( 1 / ( ... ... ))

(1 / )

ak kq q q ak k k kq q kq q km m

bk

ak kq

V r e he h c V r e r e r e r e r e
V

V hr c

           



 1 k n     

So the speed (magnitude of the velocity) in the frame of reference B simplifies to be: 

     
22

2 2 2 2 2 2 2

1 2 1 1

2

1 / ... ...

1 /

ak kq ak k k kq kq km

bk bk

ak kq

V r h h c V r r r r r

V V
V hr c

         

 


 

But 
2 2 2

1 2 ... 1k k kmr r r     

Thus 
2 2 2 2 2 2

1 2 1 1... ... 1k k kq kq km kqr r r r r r              … (3) 

 
   2 2 2 2 2 2 2

2

2 1 / 1
, ,

1 /

ak kq ak kq ak kq

bk k ak

ak kq

V r h hV r h c V r
V h V

V hr c


    
 


  

 
   2 2 2 2 2 2 2 2

2

1 2 / 1
, ,

1 /

ak kq kq ak kq ak kq

bk k ak

ak kq

V r r h hV r h V c r
V h V

V hr c


     
 


 

 
 2 2 2 2 2 2

2

2 / 1
, ,

1 /

ak ak kq ak kq

bk k ak

ak kq

V h hV r h V c r
V h V

V hr c


   
 


   … (4) 

As per the conservation of function F in the frame of reference B 

  
1

( ) , , . C
n

bk k ak b

k

TotalEnergy B F V h V const


    

Let   and   be two states of the system in which the energy is conserved then: 

     
1 1

, , , ,
n n

bk k ak bk k ak

k k

F V h V F V h V      
 

      … (5) 

As equation (4) is valid for any h < c and  h is a real number thus a derivative with respect to h (along the 

observation continuum) should also satisfy the equality both in state   and   

     
1 1

, ,, ,n n
bk k akbk k ak

k k

F V h VF V h V

h h

    


 


 

 
     … (6) 

Equation (6) implies 
  

1

, ,n
bk k ak

k

F V h V

h








 is also conserved as it remains constant with any arbitrary 

change of state   to  when the F is conserved. 
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Taking chain rule [17] on 
  , ,bk k akF V h V

h




 

       
 

, , , ,, ,

, ,

bk k ak bk k akbk k ak

bk k ak

E V h V E V h VV h V

h h V h V

 



 


  
 

       
1 1

, , , ,, ,n n
bk k ak bk k akbk k ak

k k bk

F V h V F V h VV h V

h h V

 

 

 


  
    … (7) 

Thus given any function F: 

If   
1

, ,
n

bk k ak

k

F V h V


 is conserved then 
    

1

, ,, ,n
bk k akbk k ak

k bk

F V h VV h V

h V







 
 is also conserved 

Now let us simplify the term 
 , ,bk k akV h V

h




 

  

   

2 2 2

2 2 2 2 2 2 2

1
2 2 2 / 1

( , , ) 2

1 / 2 / 1

ak kq ak kq
bk ak

ak kq ak ak kq ak kq

h V r hV c r
V h V

h V hr c V h hV r h V c r


  




     
 

   

 

2 2 2 2 2 2 2

2
2

2 / 1 /

1 /

ak ak qk ak kq ak kq

ak kq

V h hV r h V c r V r c

V hr c

   



    

If we take h = 0 

 

 

 
 

2 2

22
0

1
2 /( , , ) 2

11

ak qk
ak ak kqbk ak

h ak

V r V V r cV h V

h V






 


 

2 2

0

( , , )
/bk ak

qk qk ak

h

V h V
r r V c

h






  


       

 2 2

0

( , , )
1 /bk ak

qk ak

h

V h V
r V c

h






  


     … (8) 

Substituting equation (8) into equation (7) for h = 0 

 
  2 2

1
0

, ,
1 /

n
bk k ak

qk ak

k bk
h

F V h V
r V c

V










 is also conserved.   … (9) 

As we proved for any 1 q m  thus (9) is true for any 1 q m  . 

Hence proved. 



7 

2.2 Lemma 2: Vector conservation for m-dimensional space 

Statement: Given m-dimensional space with orthonormal basis as 1 2 3{ , , ,..., }me e e e , velocity of frame of 

reference  h B  BC w.r.t. A as qh he    (direction in the qth dimension), velocity of kth particle in 

frame of reference A as ak ak kV V r  (where 1 1 2 2 ...k k k km mr r e r e r e    is the unit vector in the direction 

of akV with 
2 2 2

1 2 ... 1k k kmr r r    ) and a scalar conservation function F, which solely depends on the 

magnitude of velocity bkV , if   
1

, ,
n

bk k ak

k

F V h V


  is conserved then 

 
  2 2

1
0

, ,
1 /

n
bk k ak

ak k

k bk
h

F V h V
V c r

V










 is also conserved for all 1 q m  . 

Proof: 

As per Lemma 1 for the above given conditions  
  2 2

1
0

, ,
1 /

n
bk k ak

qk ak

k bk
h

F V h V
r V c

V










 is conserved. 

Putting the above equation in the vector sum with orthonormal basis 1 2 3{ , , ,..., }me e e e and running q from 

1 to m 

 
  

 
  2 2 2 2

1 1

1 1
0 0

, , , ,
1 / ... 1 /

n n
bk k ak bk k ak

k ak mk ak m

k kbk bk
h h

F V h V F V h V
r V c e r V c e

V V

 

 
 

 
   

 
   

is also conserved in vector form as it is a linear combination of conserved quantities. 

 
  

 
  2 2 2 2

1 1

1
0 0

, , , ,
1 / ... 1 /

n
bk k ak bk k ak

k ak mk ak m

k bk bk
h h

F V h V F V h V
r V c e r V c e

V V

 


 

  
     
  
 

  

 
  

 2 2

1 1

1
0

, ,
1 / ...

n
bk k ak

ak k mk m

k bk
h

F V h V
V c r e r e

V






 
    
 
 

  

 
  2 2

1
0

, ,
1 /

n
bk k ak

ak k

k bk
h

F V h V
V c r

V







 


  is conserved.   … (10) 

Hence proved. 

2.3 Lemma 3: With Lorentz transformation of velocity and conservation function F: 

  

0

, ,bk k ak

bk
h

F V h V

V








is equal to 

 ak

ak

F V

V




 

Proof: 
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As the differential is taken w.r.t.  , ,bk k akV h V  and the function is also the function of complete

 , ,bk k akV h V and not individual , ,k akh V , we can take h = 0 before the differential is taken 

     
0

00

, ,, , bk k akbk k ak h

bk bk hh

F V h VF V h V

V V







 

 
 

But we derived earlier, 
0bk akh

V V

  

Thus 
    

0

, ,bk k ak ak

bk ak
h

F V h V F V

V V





 


 
 

Hence proved. 

 

2.4 Theorem 1: Conservation of relativistic energy implies conservation of relativistic momentum. 

Proof: 

Take F as relativistic energy function. This means 

  
  

2

2 2

, ,

1 , , /

k
bk k ak

bk k ak

m c
F V h V

V h V c









 

Thus  

  

  

2

2 2

, , 1

1 , , /

bk k ak

k

bk bk
bk k ak

F V h V
m c

V V V h V c





 
   

    
 

 

    

  

2 2

2 2 3/2

, , 2 , , /1

2 (1 , , / )

bk k ak k bk k ak

bk bk k ak

F V h V m c V h V c

V V h V c

 



 
  

 
 

    

  
2 2 3/2

, , , ,

(1 , , / )

bk k ak k bk k ak

bk bk k ak

F V h V m V h V

V V h V c

 




 

 
  

For h = 0 

    

  
2 2 3/2

0

, , 0, ,

(1 0, , / )

bk k ak k bk k ak

bk bk k akh

F V h V m V V

V V V c

 







 
   … (11) 

Putting h = 0 in the equation (1) 
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2

0, ,
1

ak

bk k ak

V
V V   

 0, ,bk k ak akV V V          … (12) 

Substituting (12) in (11) 

  
2 2 3/2

0

, ,

(1 / )

bk k ak k ak

bk ak
h

F V h V m V

V V c








 
     … (13) 

Substituting (13) in (10) 

 2 2

2 2 3/2
1

1 /
(1 / )

n
k ak

ak k

k ak

m V
V c r

V c

 


   is conserved. 

2 2
1 1 /

n
k ak k

k
ak

m V r

V c




  is conserved. 

But 
2 2 2 21 / 1 /

k ak k k ak
ak

ak ak

m V r m V
P

V c V c
 

 
 

1

n

ak

k

P


  is conserved        … (14) 

Hence proved. 

2.5 Theorem2: Conservation of momentum implies conservation of kinetic energy 

Proof:  

2 2 2 2
1 1 11 / 1 /

n n n
k ak k ak

ak

k k k
ak ak

m V m V
P

V c V c  

 
 

    is given to be conserved. 

This implies that 
2 2

1 1 /

n
k ak

kq

k
ak

m V
r

V c 
 is conserved for 1 q m   

Using F = 
2 21 /

k ak kq

ak

m V r

V c
is the Lemma 1 and using the Lemma 3 

 
 2 2

1

1 /
n

ak

ks ak

k ak

F V
r V c

V





 is conserved for all 1 s m  . 

Simplifying  
 2 21 /

ak

ak

ak

F V
V c

V
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 2 2 2 2

2 2
1 / 1 /

1 /

k ak kqak

ak ak

ak ak ak

m V rF V
V c V c

V V V c

  
   
    

 

 
 

 
 

 

2

2 2 2 2 2

3/22 2 2 2 2

2 /1 1 1
1 / 1 /

21 / 1 /

ak akak

ak ak k kq

ak ak ak

V V cF V
V c V c m c r

V c V c V c

 
     
   
 

 

 
 

 
 

2 2 2 2
2 2 2 2 2

3/22 2 2

1 / /1
1 / 1 /

1 /

ak ak ak
ak ak k kq

ak ak

F V V c V c
V c V c m c r

V c V c

       
  
 

 

 
 

 
 

2 2 2 2 2

3/22 2 2

1 1
1 / 1 /

1 /

ak

ak ak k kq

ak ak

F V
V c V c m c r

V c V c

 
    
  
 

 

 

 
  2

2 2

2 2 2

1
1 /

1 /

k kqak

ak

ak ak

m c rF V
V c

V c V c

 
   
   

   

Thus 

2

2 2 2
1

1

1 /

n
k kq

ks

k
ak

m c r
r

c V c

 
 
  

  is conserved for all 1 s m  . 

As 
2

1

c
is just a constant multiplication factor thus 

2

2 2
1 1 /

n
k kq

ks

k
ak

m c r
r

V c

 
 
  

  is conserved for all 1 s m  . 

Furthermore

2

2 2
1 11 /

n n
k kq

ks k kq ks

k k
ak

m c r
r E r r

V c 

 
  
  

   

Taking q = s 

Thus
2

1

n

k ks

k

E r


  is conserved for all 1 s m  . 

As sum of conserved function is a conserved function thus 
2

1 1

m n

k kq

q k

E r
 

 is also conserved. 

2

1 1

n m

k kq

k q

E r
 

  is conserved. 

But 
2

1

1
m

kq

q

r
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1

n

k

k

E


 is conserved. 

Here kE is the kinetic energy of the particle k. 

Hence proved. 

2.6 Infinite conservation equations 

2.6.1 Lemma 4: Conservation as an operator 

Statement: Define an operator as ( , )D q k  =  2 21 /qk ak

ak

r V c
V





. Given m-dimensional space with 

orthonormal basis as 1 2 3{ , , ,..., }me e e e , velocity of frame of reference  h B  BC w.r.t. A as 

qh he    (direction in the qth dimension), velocity of kth particle in frame of reference A as ak ak kV V r  

(where 1 1 2 2 ...k k k km mr r e r e r e    is the unit vector in the direction of akV with 
2 2 2

1 2 ... 1k k kmr r r    ) 

and a scalar conservation function F, which solely depends on the magnitude of velocity bkV , if 

  
1

, ,
n

bk k ak

k

F V h V


  is conserved then  
1

( , )
n

ak

k

D q k F V


 is also conserved for all 1 q m  . 

Proof: 

As per Lemma 1, for the above conditions  
  2 2

1
0

, ,
1 /

n
bk k ak

qk ak

k bk
h

F V h V
r V c

V










 is conserved. 

As per Lemma 3 
    

0

, ,bk k ak ak

bk ak
h

F V h V F V

V V





 


 
 

It means that  
 2 2

1

1 /
n

ak

qk ak

k ak

F V
r V c

V





 is conserved.     … (15) 

Replacing ( , )D q k  =  2 21 /qk ak

ak

r V c
V





in (15)     

 
1

( , )
n

ak

k

D q k F V


 is conserved       …(16) 

Hence proved. 

2.6.2 Lemma 5: Infinite general conservations in any direction for m-dimensional space 

Statement: Given qh he    and 1 1 2 2( ... )ak ak k k km mV V r e r e r e    with 
2 2 2

1 2 ... 1k k kmr r r     and a 

scalar conservation function F, which solely depends on the magnitude of velocity bkV , if 
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1

, ,
n

bk k ak

k

F V h V


  is conserved then  2 1

1

( , )... ( , ) ( , )
n

w ak

k

D q k D q k D q k F V


 is also conserved for 

arbitrary set of operators 2 1{ ( , ),..., ( , ), ( , )}wD q k D q k D q k . 

Proof: 

Proof by induction: 

A) For the w =1 condition the proof is Lemma 4.  

B) Now assume that it is true for w then 

 2 1

1

( , )... ( , ) ( , )
n

w ak

k

D q k D q k D q k F V


 is conserved. 

Take a new conservation function    2 1( , )... ( , ) ( , )ak w akG V D q k D q k D q k F V  … (17) 

As per Lemma 4 

 
1

( , )G
n

ak

k

D q k V


  is conserved.      … (18) 

Putting equation (17) in the equation (18) 

 2 1

1

( , ) ( , )... ( , ) ( , )
n

w ak

k

D q k D q k D q k D q k F V


 , is also conserved, which has 1w  number of operators   

Thus 1w w   

Hence proved. 

2.6.3 Separation of directions and derivatives in the infinite general conservations in any direction for 

m dimensional space 

As per Lemma 5,  2 1

1

( , )... ( , ) ( , )
n

w ak

k

D q k D q k D q k F V


  is conserved for the conservation function F. 

Also ( , )wD q k =  2 21 /
wq k ak

ak

r V c
V





. As 

wq kr is independent of akV it can separated and taken out of the 

series of operators. Let us define operator ( )S k  =  2 21 /ak

ak

V c
V





then: 

     2 1

1 1 1

( , )... ( , ) ( , ) ( )
f

wn n
w

w ak kq ak

k k f

D q k D q k D q k F V r S k F V
  

   is conserved   … (19) 

2.6.4 Lemma 6: Repeated application of the operator ( )S k =  2 21 /ak

ak

V c
V





on relativistic energy  
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Statement: Given the relativistic conservation function F =

2

2 21 /

k

ak

m c

V c
, the result of application of 

operator ( )S k is  
2

2

2 22 2

1 1
( )

1 /

r k

r r

ak

m c
S k F F

c cV c
 


 and 

 
2 1

2 22 2

1 1
( )

1 /

r k ak

r r

ak

m V
S k F P

c cV c


 


for r   

Proof: 

Proof by induction: 

For r = 0 

2

2 21 /

k

ak

m c
F

V c



 

   
1 2 2 2

2 2

1
( ) 1 /

1 /
ak k

ak ak

S k F V c m c
V V c

 
  
   

 

   
2

2 2 2

2 2 3/2

2 /1
( ) 1 /

2 (1 / )

ak
ak k

ak

V c
S k F V c m c

V c


   


 

   
2

2 2 2

2 2 3/2

/
( ) 1 /

(1 / )

ak
ak k

ak

V c
S k F V c m c

V c
   


 

 
2 2

2 2 2 2

/
( )

1 / 1 /

k ak k ak

ak ak

m c V c m V
S k F

V c V c


  

 
     … (20) 

Assume it is correct for an r 

 
2

2

2 2 2

1
( )

1 /

r k

r

ak

m c
S k F

c V c
 


 and  

2 1

2 2 2

1
( )

1 /

r k ak

r

ak

m V
S k F

c V c





 … (21) 

Consider  
2 2

( )
r

S k F


 

   
2 2 2 1

( ) ( ) ( )
r r

S k F S k S k F
 

  

From equation (21) 

 
2 2

2 2 2

1
( ) ( )

1 /

r k ak

r

ak

m V
S k F S k

c V c
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2 2 2 2

2 2 2

1
( ) 1 /

1 /

r k ak
ak r

ak ak

m V
S k F V c

V c V c

 
  

 
 

   
2 2 2 2 2

2 2 2 2

1
( ) 1 /

1 /

r ak
ak k r

ak ak

V
S k F V c m c

c V V c





 
   
   

 

   
 

 

2

2 1 2 2 2

3/22 2 2 2 2 2

2 /1 1 1
( ) 1 /

21 / 1 /

r ak ak

ak k r

ak ak

V V c
S k F V c m c

c V c V c





 
    
  
 

 

   
 

2 2 2 2
2 2 2 2 2

3/22 2 2 2

1 / /1
( ) 1 /

1 /

r ak ak
ak k r

ak

V c V c
S k F V c m c

c V c





 
    

 
 

 

   
 

2 2 2 2 2

3/22 2 2 2

1 1
( ) 1 /

1 /

r

ak k r

ak

S k F V c m c
c V c





 
   
 
 

 

   
 

2 2 2 2 2

3/22 2 2 2

1 1
( ) 1 /

1 /

r

ak k r

ak

S k F V c m c
c V c





 
   
 
 

 

 
2

2 2

2 2 2 2

1
( )

1 /

r k

r

ak

m c
S k F

c V c





 
  
  

     … (22) 

Now consider  
2 3

( )
r

S k F


 

   
2 3 2 2

( ) ( ) ( )
r r

S k F S k S k F
 

  

From equation (22) 

 
2

2 3

2 2 2 2

1
( ) ( )

1 /

r k

r

ak

m c
S k F S k

c V c







 

   
2

2 3 2 2

2 2 2 2

1
( ) 1 /

1 /

r k
ak r

ak ak

m c
S k F V c

V c V c






  

 
 

   
2

2 3 2 2

2 2 2 2

1
( ) 1 /

1 /

r k
ak r

ak ak

m c
S k F V c

c V V c






  

 
 

   
2

2 3 2 2 2

2 2 2 2 3/2

/1
( ) 1 /

(1 / )

r ak
ak k r

ak

V c
S k F V c m c

c V c
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2 3

2 2 2 2

1
( )

1 /

r k ak

r

ak

m V
S k F

c V c




 


      … (23) 

Thus truth for r implies truth for r+1.  

Hence proved. 

 

2.6.5 Theorem3: Infinite independent conservation for 2D space 

Statement: Given the relativistic conservation function

2

2 21 /

k
k

ak

m c
E

V c



 in the 2D space, if kE is 

conserved then  
2

1

k

n
i r

k

k

E e r




    and 
(2 1)

1

k

n
i r

k

k

P e r




   are also conserved. 

Proof: 

If the space is 2D, the direction vectors  1 2,k kr r  are circular angle with  1 2,k kr r  =  cos ,sink k  .  

As per Lemma 3 conservation operators are:  2 2

1 (1, ) cos 1 /k ak

ak

D D k V c
V




  


 and

 2 2

2 (2, ) sin 1 /k ak

ak

D D k V c
V




  


 

Let us take following operators: 

 2 2

1 2 1 / ( )k ki i

ak

ak

D D iD e V c e S k
V

 




    


 

 2 2

1 2 1 / ( )k ki i

ak

ak

D D iD e V c e S k
V

  




    


 

As they are linear combination of the conserved operators, they are conserved operators. 

As per Lemma 4, any composition of these operators also form a conservation operator. 

Thus: 

   
j l

D D  is also a conservation operator for any ,j l   

Consider    
j l

D D   

       ( ) ( )k k
j lj l i i

D D e S k e S k
 

    

     ( )
( )k

j l j li j l
D D e S k

 

    

Let us 2 cases: 
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Case 1: 2j l w   

The conservation operator for 2j l w   is  
2(2 2 )

( )k
wi w l

e S k


 

Consider the following conserved function:  

 
2

2(2 2 )

2 2
( )

1 /

k
wi w l k

ak

m c
e S k

V c


 
 
  

 

2
(2 2 )

2 2 2

1

1 /

ki w l k

w

ak

m c
e

c V c





 

(2 2 )

2

1
ki w l

akw
e E

c


  

As 
2

1
wc

is just a constant multiplier 

2( ) ki w l

ake E


 is conserved function for arbitrary w and l . Take  r w l   

2 ki r

ake E


 is a conserved function. 

Case 2: 2 1j l w    

The conservation operator for 2 1j l w    is  
2 1(2 1 2 )

( )k
wi w l

e S k
  

 

Consider the following conserved function:  

 
2

2 1(2 1 2 )

2 2
( )

1 /

k
wi w l k

ak

m c
e S k

V c

  
 
 
  

 

(2 1 2 )

2 2 2

1

1 /

ki w l k ak

w

ak

m V
e

c V c

 



 

(2 2 1)

2

1
ki w l

akw
e P

c

 
  

As 
2

1
wc

is just a constant multiplier 

(2( ) 1) ki w l

ake P
 

 is conserved function for arbitrary w and l . Take  r w l   

(2 1) ki r

ake P


 is a conserved function. 

Hence proved. 

2.6.6 When do the conservation equations become finite? 
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As we proved in theorem 2, there are infinite equations of conservation not only for angle k  but 2 kr  for 

akE  and (2 1) kr   for akP . The number of equations become finite only when all k are of the form

/k kW S , where ,k kW S  are co-prime natural number. This makes the set 
2 / 2 ( 1)/

{1, ,..., }k k k k ki W S i W S S
e e

  
 a 

classical finite group of order kS with element as 
th

kS  root of unity. 

3. Proof of fallacy in Einstein’s two blackboard derivation 

The derivation by Albert Einstein was based on elastic collision of two particles, which approach each other 

head on and then divert at some angle. It was shown in the derivation that if this phenomena was observed 

from any other frame reference, the conservation still was true [15]. 

Here we prove using the infinite conservation equations that such an elastic collision is not at all possible 

thus the derivation is wrong.  As we proved in the theorem 2 for any closed system of particles with energy 

exchange in 2D following quantities are conserved: 

22

2 2
1 1 /

ki rn

k
ak

mc e
r

V c





 


   and 

(2 1)

2 2
1 1 /

ki rn
ak

k
ak

mV e
r

V c





 


    … (24) 

Let us take a simple case of 2 particles as in the Einstein’s two blackboard derivation in 1934: 

 

Figure 3: Elastic collision of particles as taken by Einstein for 2 blackboard 2E mc  proof. 

The particle have exactly same rest mass and approach each other head (initial condition) with exactly the 

same speed on and then move away at angles   and   (final condition) at exactly the same speed. 

3.1 Equations for the initial condition 

Energy equations 

22
2 2 ( ) 2

2 2
1

(1 ) 2
1 /

ki rn
i r

k
ak

mc e
mc e mc

V c


 



  


  r      … (25) 

Momentum equations 

(2 1)
(2 1)

2 2
1

(1 )
1 /

ki rn
i rak

k
ak

mV e
mV e

V c









 


 = 0 r      … (26) 
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3.2 Equations for the final condition 

 Energy equations 

22
2 2 2 ( )

2 2
1

( )
1 /

ki rn
i r i r

k
ak

mc e
mc e e

V c


   



 


  

2 22 i rmc e  r          … (27) 

Momentum equations 

(2 1)
(2 1) (2 1)

2 2
1

(1 )
1 /

ki rn
i r i rak

k
ak

mV e
mVe e

V c


 


 



 


 = 0 r      … (28) 

For the energy equations to be conserved (25) = (27) r   

But 
2 2 22 2 i rmc mc e    for an arbitrary angle . The only solution for it is 0  , which is a trivial 

solution with no impact. 

Hence proved that the derivation is wrong. 

 

4. Conclusion and further work 

The result of derivation of conservation of kinetic energy from the conservation of momentum implies 

that either the potential energy has a momentum thus composed of inertial particles or there cannot be any 

net conversion of potential energy to the kinetic energy in a closed system. 

Furthermore the existence of infinite conservation equations has a deep impact on Lagrangian formulation 

and path integral formulation. For example let us consider initial state of particles with inter-particle 

distance nearly infinity, which means that there is no inter-particle potential in the initial state. Let there 

be an intermediate interaction between the particles, which has some kind of inter-particle potential 

energy and inter particle energy exchange. Let the final state of particles be also at infinity, which means 

are non-interactive.  In this case if there energy exchange is elastic, it must follow the infinite equations. 

But as we have seen in the results, that would lead to very restrictive state change and energy exchange. 

As the final asymptotic positions/velocity angles of particles is a result of the intermediate exchange, it 

would also put restrains on the how the intermediate potential energy field is setup. So it impacts every 

kind of potential energy and energy exchange, be it electromagnetic, gravitational, weak forces or strong 

forces. 

As we can see in the derivations the number of equations are infinite for an arbitrary dimensional space 

and an arbitrary speed dependent kinetic energy function. Which means that either the definition of 

energy and conservation has to be re-looked into or one has to assume a stealth underlying energy 

compensating the equations. 
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