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The main goal of the present work is to investigate the validity of the second law of gravitational
thermodynamics in an expanding Gödel-type universe filled with generalized Chaplygin gas interact-
ing with cold dark matter. By assuming the Universe as a thermodynamical system bounded by the
apparent horizon, and calculating separately the entropy variation for generalized Chaplygin gas,
cold dark matter and for the horizon itself, we obtained an expression for the time derivative of the
total entropy. We conclude that the 2nd law of gravitational thermodynamics is conditionally valid
in the cosmological scenario where the generalized Chaplygin gas interacts with cold dark matter.
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I. INTRODUCTION

In black hole thermodynamics, the entropy and tem-
perature are proportional to the area of the horizon and
the surface gravity at the horizon, respectively[1, 2]. The
entropy, temperature and mass satisfy the 1st law of
thermodynamics[3] for a black hole. This interesting fea-
ture encourages theoretical physicists to find a definition
describing the relationship between the black hole ther-
modynamics and Einstein’s field equations. Bekenstein,
in 1973, found a relation between the thermodynamics
of a black hole and the event horizon[4]. In black hole
physics, an event horizon is the measure of entropy which
means each horizon corresponds to an entropy. Further-
more, Wang with his collaborators[5], in 2006, obtained
interesting results for the first and second laws of thermo-
dynamics. They emphasized that our universe should be
non-static, however the usual description of the thermo-
dynamical quantities on the event horizon may be more
complicated than in the static spacetime.
Cai and Kim[6] showed, in general relativity, that the

Friedman equation can be written in the form of the first
law of thermodynamics:

−dE = TAdSh (1)

on the dynamical apparent horizon r̃A. Here, Cai and
Kim assumed that TA = (2πr̃A)

−1, Sh = πr̃2AG
−1 and

dE are the Hawking temperature, the horizon entropy
and the amount of the internal energy flow through hori-
zon, respectively[6]. Later, Friedman equation in general
relativity was written in another form[7]

dE = TdS +WdV (2)

at dynamical apparent horizon, where E = ρV and
W = 1

2 (ρ − p) are the internal energy and work density,
respectively.
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The Chaplygin gas is one of the famous issues of cur-
rent interest in modern cosmology. In their interesting
paper Kamenshchik et al.[8] have considered the Chap-
lygin gas obeying the following equation of state

pc = − Λ

ρc
, (3)

where pc and ρc are respectively pressure and energy
density in comoving reference frame, with ρc > 0; Λ
is a positive constant[9]. After this result, a certain
interest[10–13] has been raised in literature because of
its many interesting and intriguingly unique features[9].
Also, this model is investigated from the field theory
points of view[14]. On the other hand, the Chaplygin gas
emerges as an effective fluid related to d-branes[15, 16]
and can also be defined using the Born-Infeld action[17].

In the present work, we suggest a correspondence be-
tween cold dark matter scenario and the Chaplygin gas
dark energy model. Type Ia supernovae observations[2,
18–20] indicates that the matter in our universe is dom-
inated by two enigmatic components: dark energy and
dark matter. The dark energy is an exotic matter with
large negative pressure (above 73 percent) and the dark
matter is an invisible matter without pressure (about 23
percent of the universe). The remaining part (about
4 percent) is occupied by some other cosmic matters.
It is commonly believed that our universe has a phase
transition[21] from decelerating to accelerating and ex-
pands with accelerating velocity. This interesting feature
of the universe is caused by two mysterious dark compo-
nents. There are several proposals to be a candidate for
dark part of the universe, but still the nature of dark
universe is completely unknown[22]. The cosmological
constant is the best instrument to identify this nature
of the universe, but it causes some other difficulties like
fine-tuning and cosmic-coincidence puzzle[23]

The plan of the work is as follows: in then next sec-
tion, we construct the scenario where generalized Chap-
lygin gas interacts with cold dark matter. Section III is
devoted to study the 2nd law of gravitational thermo-
dynamics for our cosmological model by considering the
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universe as a system bounded by the apparent horizon.
Finally, in section IV, we give conclusions and the sum-
mary of the obtained results.

II. CHAPLYGIN GAS INTERACTING WITH
COLD DARK MATTER

One of the famous solutions of general relativistic field
equations with cosmological constant for incoherent mat-
ter was obtained by Gödel in 1949[24]. The line-element
representation of the expanding Gödel-type spacetimes is
written as

ds2 = −dt2 − 2aλ2e
nxdtdy

+a2[dx2 + λ1e
2nxdy2 + dz2], (4)

here the scale factor a depends on t. When λ1 = 1 and
λ2 = n = 0, the expanding Gödel-type model reduces to
the flat Friedmann-Robetson-Walker universe. Thus the
expanding Gödel-type universe is the generalization of
the flat Friedmann-Robetson-Walker model. By consid-
ering the line-element (4), the metric tensor gµν is written
as

gµν = −δ0µδ
0
ν + a2δ1µδ

1
ν + λ1a

2e2nxδ2µδ
2
ν + a2δ3µδ

3
ν

−aλ2e
nx[δ0µδ

2
ν + δ2µδ

0
ν ], (5)

and its inverse gµν is

gµν = − λ1

λ1 + λ2
2

δµ0 δ
ν
0 +

1

a2
δµ1 δ

ν
1 +

e−2nx

a2(λ1 + λ2
2)
δµ2 δ

ν
2

+
1

a2
δµ3 δ

ν
3 − λ2e

−nx

a2(λ1 + λ2
2)
[δ0µδ

2
ν + δ2µδ

0
ν ]. (6)

The surviving components of the Christoffel symbols

2Γα
µν = gαβ(∂µgβν + ∂νgβµ − ∂βgµν) (7)

are

Γ0
00 =

ȧλ2
2

(λ1 + λ2
2)a

, Γ0
10 = Γ0

01 =
nλ2

2

2(λ1 + λ2
2)
, (8)

Γ0
11 = Γ0

33 =
λ1aȧ

λ1 + λ2
2

, Γ0
20 = Γ0

02 = − ȧλ1λ2e
nx

λ1 + λ2
2

,

(9)

Γ0
21 = Γ0

12 = −naλ1λ2e
nx

2(λ1 + λ2
2)

, Γ0
22 =

aȧλ2
1e

2nx

λ1 + λ2
2

, (10)

Γ1
10 = Γ1

01 = Γ3
30 = Γ3

03 =
ȧ

a
, Γ1

20 = Γ1
02 =

nλ2e
nx

2a
(11)

Γ1
22 = −nλ1e

2nx, Γ2
00 = − ȧλ2e

−nx

a2(λ1 + λ2
2)
, (12)

Γ2
10 = Γ2

01 = − nλ2e
−nx

2a2(λ1 + λ2
2)
, Γ2

11 = − ȧλ2e
−nx

λ1 + λ2
2

,

(13)

Γ2
20 = Γ2

02 =
ȧλ1

a(λ1 + λ2
2)
, Γ2

21 = Γ2
12 =

n(2λ1 + λ2
2)

2(λ1 + λ2
2)

,

(14)

Γ2
22 =

λ1λ2ȧe
nx

λ1 + λ2
2

, Γ2
33 =

ȧλ2e
−nx

λ1 + λ2
2

. (15)

Next, the non-vanishing components of the Ricci tensor

Rαβ = ∂ρΓ
ρ
βα − ∂βΓ

ρ
ρα + Γρ

ρλΓ
λ
βα − Γρ

βλΓ
λ
ρα (16)

are given as

R00 =
(n2 + 4ȧ2)λ2

2 − 2aä(3λ1 + 2λ2
2)

2a2(λ1 + λ2
2)

, (17)

R10 = R01 =
nȧλ2

2

a(λ1 + λ2
2)
, (18)

R11 =
4ȧ2λ1 − n2(2λ1 + λ2

2) + 2λ1aä

2(λ1 + λ2
2)

, (19)

R20 = R02 =
λ2e

nx

2a(λ1 + λ2
2)
(n2λ2

2 − 4λ1ȧ
2 − 2λ1aä), (20)

R21 = R12 = −nȧλ1λ2e
nx

λ1 + λ2
2

, (21)

R22 = − λ1e
2nx

2(λ1 + λ2
2)
[n2(2λ1+3λ2

2)−4λ1ȧ
2−2λ1aä], (22)

R33 =
λ1

λ1 + λ2
2

(2ȧ2 + aä). (23)

Hence, we find the Ricci (curvature) scalar as

R = gµνRµν =
12ȧ2λ1 − n2(4λ1 + 3λ2

2) + 12λ1aä

2a2(λ1 + λ2
2)

.

(24)
Next, the energy-momentum tensor is defined as

Tµ
ν = Tµ(c)

ν + Tµ(m)
ν , (25)

where the superscripts c ad m denote Chaplygin gas and
cold dark matter, respectively, and the corresponding
energy-momentum tensors are given as follows:

Tµ(c)
ν = (−ρc, pc, pc, pc), (26)

Tµ(m)
ν = (−ρm, pm, pm, pm). (27)
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In this section, we consider the generalized Chaplygin gas
when there is an interaction between generalized Chap-
lygin gas energy density ρc and a cold dark matter with
ωm = 0.
General relativistic field equations (with assuming

8πG = 1 and c = 1)

Rµν − 1

2
Rgµν = −Tµν , (28)

for the line-element (4) leads to the following system of
equations (for details check appendix)

ρc + ρm =
4(3λ1 + 2λ2

2)ȧ
2 − n2(4λ1 + λ2

2)

(λ1 + λ2
2)a

2

− 2λ2
2ä

(λ1 + λ2
2)a

, (29)

n2λ2
2 − 4λ1(ȧ

2 + 2aä)

4(λ1 + λ2
2)

= −pc, (30)

3n2λ1λ
2
2e

2nx

4(λ1 + λ2
2)

+
λ2
1(ȧ

2 + 2aä)e2nx

λ1 + λ2
2

= pc, (31)

n2(3λ2
2 + 4λ1)

4(λ1 + λ2
2)

− λ1(ȧ
2 + 2aä)

λ1 + λ2
2

= −pc, (32)

where, for the scale factor a, an overdot means the first
and double overdot means the second derivative with re-
spect to time. The continuity equations, Tµν

;ν = 0, for
Chaplygin gas and Cold Dark Matter, are

ρ̇c + 3
ȧ

a
(1 + ωc)ρc = −Σ, (33)

ρ̇m + 3
ȧ

a
ρm = Σ, (34)

Here, the interaction is defined by the quantity Σ =
Γρc[25]. Also, Σ < 0 corresponds to energy transfer from
the cold dark matter sector to the other constituent. On
the other hand, in case Σ > 0, there is an energy trans-
fer from Chaplygin gas sector to cold dark matter sector.
This is a decaying of the Chaplygin gas component into
cold dark matter with the decay rate Γ. We take a ratio
of two energy densities as r = ρm/ρc. Next, we define the
mean expansion rate as an average Hubble rate H = ȧ

a .
After following Ref. [26], if we assume

ωc
eff = ωc +

Γ

3H
, ωm

eff =
−Γ

3rH
, (35)

then the continuity equations can be given in their stan-
dard form

ρ̇c + 3H(1 + ωc
eff)ρ

c = 0, (36)

ρ̇m + 3H(1 + ωm
eff)ρ

m = 0. (37)

In the generalized Chaplygin gas approach[17], the equa-
tion of state[27], p = −Λ

ρ where Λ is a positive constant,

is generalized to p = −Λ
ρα . By considering this relation,

one can find

ωc =
pc

ρc
=

−Λ

(ρc)α+1
. (38)

Hence, we have the effective equation of state for the
generalized Chaplygin gas as

ωc
eff =

Γ

3H
− Λ

(ρc)α+1
. (39)

Here as in Ref. [5], the decay rate is given by

Γ = 3Hb2(1 + r) (40)

with the coupling constant b2.

III. THE SECOND LAW OF GRAVITATIONAL
THERMODYNAMICS

In this section, we discuss the validity of the gener-
alized second law of thermodynamics in the expanding
Gödel-type spacetime bounded by an apparent horizon
with size r̃A which coincides with the Hubble horizon in
the case of a flat geometry, i.e. r̃A = 1

H . The first law of
thermodynamics gives

TAdS = pdV + dE, dS =
pdV + dE

TA
, (41)

where TA, S, E and p are the temperature, entropy, in-
ternal energy and pressure of the system, respectively.
The corresponding entropies will become

dSc =
pcdV + dEc

TA
, dSm =

dEm

TA
, (42)

where pc, pm, Ec and Em are the pressures and internal
energies of Chaplygin gas and cold dark matter, respec-
tively. Also, we assume that the system is in equilibrium,
which implies that all the components of the system have
the same temperature[4]. Thermodynamical quantities
are related to the cosmological quantities by the follow-
ing definitions

pc = ωc
effρ

c, (43)

Ec =
√
λ1e

nxa3ρc, Em =
√
λ1e

nxa3ρm, (44)

where V =
√
λ1e

nxa3 is the volume of the system con-
taining all the matter. On the other hand, the entropy
of the horizon is defined as Sh = kA

4 , where A = 4πr̃2A is
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the surface area of the black hole and k is the Boltzmann
constant. So that, we find

Sh = kπr̃2A, (45)

Ṡh = 2kπr̃A ˙̃rA. (46)

Also, the time derivation of equation (42) yields

Ṡc =
1

TA

(
3pcȧa2

√
λ1e

nx + Ėc
)
. (47)

Ṡm =
Ėm

TA
. (48)

At this point, we have to connect the temperature of the
fluids T , which is equal to that of the apparent horizon
TA, with the geometry of the universe. The temperature
of the horizon in terms of its radius is described by[28–31]

TA =
1

2πr̃A
. (49)

Now by making use of equations (36), (37), (43), (44)
and (46), we obtain

Ṡtotal = Ṡh + Ṡc + Ṡm = −2kπ
Ḣ

H3
+

2πV

K
Γρc. (50)

The second term given in equation (50) may be inter-
preted as entropy production term due to the interaction
between the Chaplygin gas and cold dark matter.
Furthermore, by using equation (29), we calculate

4(3λ1 + λ2
2)H

2 = (λ1 + λ2
2)(ρ

c + ρm)

+(4λ1 + λ2
2)
n2

a2
− 2λ2

2

ä

a
, (51)

and by making use of this result and equations (36)-(40)
we obtain

Ṡtotal = 6π
√
λ1e

nxa3b2(1 + r)ρc

+
kπ(λ1 + λ2

2)

4(3λ1 + λ2
2)H

4

[
3H

(
ρc + ρm − Λ

(ρc)α

)
+
2Hn2(4λ1 + λ2

2)

(λ1 + λ2
2)a

2

− 2λ2
2

λ1 + λ2
2

(
˙̈a

a
−H

ä

a
)

]
,

(52)

with

3λ1 + λ2
2 ≥ 0. (53)

Also, equation (52) and Ṡt ≥ 0 implies that

3H

(
ρc + ρm − Λ

(ρc)α

)
≥ 2λ2

2

λ1 + λ2
2

(
˙̈a

a
−H

ä

a
)

−2Hn2(4λ1 + λ2
2)

(λ1 + λ2
2)a

2

+
8H3V Γ

k

(3λ1 + λ2
2)

λ1 + λ2
2

ρc.

(54)

Now, we consider some interesting cases involving the
condition on different parameters.

• Case I. If 3λ1 + λ2
2 = 0:

In this case, Hubble parameter H and Ṡtotal tend to in-
finity from results (51) and (52), respectively. This situ-
ation may happen for very large time (t → ∞), i.e. when
the expansion rate is very high. Here, all the useable
energy in the Universe will be converted into unuseable
form of energy. The stage is also known, in literature,
as the heat death of the system and the heat death of
our universe is one of the suggested fates. If the case
occurs, then all the thermodynamic free energy will be
diminished from our universe and motion or life cannot
continue any more. In other words, the entropy of the
universe will reach its maximum value.

• Case II. If 3λ1 + λ2
2 > 0:

Here, the validity of the 2nd law of gravitational thermo-
dynamics depends on b2, Λ, α, metric potentials and the
equation of state parameters. If we remove anisotropy
in the metric potentials (by choosing n = λ2 = 0 and
λ1 = 1), the validity depends on b2, Λ, α and the equa-
tion of state parameters. However, the 2nd law of gravi-
tational thermodynamics is conditionally valid.

• Case III. When λ1 = −λ2
2:

Under this condition, equation (52) gives that

TAṠtotal = 6πλ2e
nxa3b2(1 + r)ρc. (55)

Also, if we assume that there is no interaction between
the Chaplygin gas and cold dark matter, then the Chap-
lygin gas and cold dark matter are separately conserved.
And, we get

TAṠtotal = 0. (56)

It means the validity of the 2nd law holds for all time in
this case. Besides, the result corresponds to a reversible
adiabatic expansion of our universe.

• Case IV. If we choose n = λ2 = 0 and λ1 = 1

In this case, the line-element (4) reduces to the following
form

ds2 = −dt2 + a2[dx2 + dy2 + dz2], (57)

which is known as the flat Friedmann-Robertson-Walker
spacetime. Consequently, equation (52) leads to

Ṡtotal = 6πa3b2(ρc + ρm) +
kπ

4H3

(
ρc + ρm − Λ

(ρc)α

)
.

(58)
Next, after ignoring the interaction between the Chaply-
gin gas and cold dark matter, it follows that

Ṡtotal =
kπ

4H3

(
ρc + ρm − Λ

(ρc)α

)
. (59)
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Hence Ṡtotal ≥ 0 for ρc + ρm ≥ Λ
(ρc)α ≥ 0. From this

point of view, one can say that the 2nd law of gravita-
tional thermodynamics holds for all time in this case if
the null energy condition for the considered matter is sat-
isfied. It is considerable to mention here that this result
extends the investigation of Mubasher et al. [32]. The
authors proved the validity of the generalized 2nd law
of thermodynamics for the flat Friedmann-Robertson-
Walker spacetime with a similar scenario. Hence, we con-
clude that the generalized 2nd law of thermodynamics is
conditionally valid in the Gödel universe with generalized
Chaplygin gas.

IV. CONCLUSIONS

In the present work, we investigated the cosmological
scenario where the generalized Chaplygin gas interacts
with cold dark matter and examined the validity of the
second law of gravitational thermodynamics. By assum-
ing our universe as a thermodynamical system bounded
by the apparent horizon, and calculating separately the
entropy variation for the generalized Chaplygin gas, cold
dark matter and for the horizon itself, we obtained an

expression for the time derivative of the total entropy of
the Gödel universe. We have discussed four special cases
for its validity. For a particular value of 3λ1 + λ2

2 = 0,
the case provides a general validity for the 2nd law of
gravitational thermodynamics. In this case, the heat
death of our niverse will take place due to infinite ex-
pansion and all types of motion or life cannot continue
any more. Next, the second case 3λ1 + λ2

2 > 0 gives
the conditional validity of the 2nd law. In the third
case, i.e. λ1 = −λ2

2, we see that the validity of the
2nd law holds for all time. At this stage the result de-
scribes a reversible adiabatic expansion of the Universe.
In the fourth case, the Gödel universe reduces to the flat
Friedmann-Robertson-Walker spacetime and the general
validity of 2nd law of thermodynamics depends upon the
condition ρc + ρm ≥ Λ

(ρc)α ≥ 0. This result extends the

investigation of Mubasher et al.: the authors proved the
validity of the 2nd law of gravitational thermodynam-
ics for the flat Friedmann-Robertson-Walker spacetime
with a similar scenario. We conclude that the 2nd law
of gravitational thermodynamics is conditionally valid in
the scenario where the generalized Chaplygin gas inter-
acts with cold dark matter.
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