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Quantum impedances, both scale invariant and scale dependent, govern the flow of energy in
quantum interactions. The chiral impedance is scale invariant, topological, can be identified with the
vector Lorentz impedance of the quantum Hall effect. The traditional approach to the anomaly uses
the fifth gamma matrix γ5 to project out the chiral components, isolating the interaction of the wave
function with the chiral potential from the overall dynamics. However, scale invariant impedances
cannot couple energy, only communicate phase. A proper treatment requires consideration of the
coupled dynamics of the full impedance network. Details of the calculation of π0, η, and η′ branching
ratios via background independent quantum impedances are presented, followed by a brief discussion
of the role of quantum impedances in the chiral anomaly, with an eye towards proton spin.

INTRODUCTION

In a finite quantum theory chiral symmetry is not
broken. The anomaly seems to be an inevitable result
of renormalization/regularization. However, one has a
choice - in the presence of the anomaly either chiral sym-
metry or gauge invariance must be broken.

The requirement for gauge invariance is driven by the
need to maintain phase coherence. Phase is relative.
Quantum phase is not a single measurement observable.
Yet quantum phase is deterministic in the projection op-
erator, say in the single quantum measurements of am-
plitudes that comprise an interference pattern.

In the customary approach to gauge invariance, quan-
tum phase coherence is maintained via the artifice of the
covariant derivative. This is essential. A theory without
quantum phase coherence is not a quantum theory.

The impedance approach is gauge invariant.
Gauge invariance is built in. The scale invariant
impedances - the far field photon impedance, the vec-
tor Lorentz impedance of both the quantum Hall effect
and the QED chiral anomaly, the centrifugal impedance,
the three-body impedance, the Coriolis impedance, and
in general all impedances associated with inverse square
potentials[1] - these impedances communicate both local
and non-local quantum phase[2–4].

Complex impedances shift phases. Complex quantum
impedances shift quantum phases. There is no need
in the impedance approach for the artifice of the co-
variant derivative. One need only take the appropriate
impedances into account.

The impedance approach is finite. Both the ul-
traviolet and the infrared divergences are removed by
the impedance mismatches. Impedance is a geometric
concept, depends on size and shape. In the limit of the
small, the point/singularity is infinitely impedance mis-
matched to you and I. We cannot share energy with it.
While equally decoupled, the quantum limit of the large
is perhaps more subtle, in the realm of cosmology.

It follows that the chiral anomaly does not arise in the
impedance approach. It is not unreasonable to expect
that an approach which is both finite and gauge invariant
would permit accurate calculation of the π0 branching
ratio[5–8], and much more.

QUANTUM IMPEDANCES

Every circuit designer knows - impedances govern the
flow of energy. This is not a theoretical musing. Classical
or quantum impedances, mechanical or electromagnetic,
fermionic or bosonic, topological,... To understand the
flow of energy it is essential to understand the relations
between the relevant impedances.

A novel method for calculating mechanical
impedances[9], both classical and quantum, was
presented earlier[3]. In that work a background indepen-
dent version of Mach’s principle emerged from a rigorous
analysis of the two body problem, permitting simple and
direct calculation of these impedances.

The two body problem is innately one-dimensional.
The mechanical impedances derived from Mach’s prin-
ciple can be converted to the more familiar electrical
impedances by adding the attribute of line charge den-
sity, that of the the electric charge quantum confined to
the Compton wavelength of the particle in question.

This method of generalizing quantum impedances from
the photon and quantum Hall impedances to those asso-
ciated with all potentials and forces provides a versatile
tool, effectively applied to the elementary particle spec-
trum, the mechanics of local and non-local quantum state
reduction, establishment of an exact relationship between
gravity and electromagnetism, and a possible resolution
of the black hole information paradox[3].

More recently, quantum impedances have been em-
ployed in exploring the role of time symmetry in quantum
mechanics[4, 10], and the relationship of the impedance
model to other interpretations of the formalism of quan-
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FIG. 1. Photon and electron impedances as a function of
spatial scale as defined by photon energy. The role of the fine
structure constant α is a prominent feature of the figure.

tum mechanics has been clarified[2].
In what follows the model upon which the impedance

approach is based is briefly presented. Quantum
impedance matching is then introduced via the Rosetta
Stone of modern physics, the hydrogen atom.

The quantum impedance network and the unstable ele-
mentary particle spectrum are tied together by the man-
ner in which the coherence lengths of the unstable parti-
cles are determined by the α-spaced conjunctions of the
scale-dependent mode impedances. This is followed by
application to branching ratio calculations of both the
π0 and the η, and a quantitative discussion of the η′.

THE IMPEDANCE MODEL

Physics without calculations is not physics, but rather
philosophy. This novel tool, this method of calculating
impedances, is of no use to physics without a model to
which it may be applied. The model adopted earlier [3]
remains useful. It comprises

• quantization of electric and magnetic flux, charge,
and dipole moment

• interactions between these three topologies - flux
quantum, monopole, and dipole

• confinement to a fundamental length, taken to be
the Compton wavelength of the electron

• the photon

Coupling impedances of the interactions between these
three topologies have been calculated[3, 12], and will
be presented later in this note. With the exception of
the impedances associated with inverse square potentials,
they are parametric impedances, in the sense that they
are scale dependent, and consequently energy dependent.

As such, one might conjecture that they provide a con-
finement mechanism for the mode structures that are
present in the impedance model.

THE HYDROGEN ATOM

The aim here is to see what insight into the hydrogen
atom may be gained by exploring the role of quantum
impedances in the transfer of energy from a 13.6eV pho-
ton to an electron.

In figure 1 the scale invariant far field photon
impedance is the red line entering the plot from the right
at Z0 ∼377 ohms. The photon impedance is strictly elec-
tromagnetic. Unlike massive particles, it has no mechan-
ical impedance. Also shown in the figure is the scale
invariant quantum Hall impedance, at RH ∼25.8 Kohm.
It is an electromechanical impedance.

The wavelength of the 13.6eV photon is the inverse
Rydberg. The electric and magnetic flux quanta that
comprise a photon of that energy decouple there, at the
transition from the scale invariant far field to the scale
dependent near field[11]. The decoupled flux quanta are
not scale invariant, electric going to high impedance and
magnetic to low as one moves to shorter length scales.

The far field photon is mismatched to the electron
quantum Hall impedance. The electric component of the
photon near field dipole impedance does indeed match
the quantum Hall impedance at the Bohr radius. How-
ever, for energy to flow smoothly and continuously from
the photon to the electron, from the Rydberg to the Bohr
radius, requires a smooth and continuous match to an
electron dipole impedance, a quantum dipole impedance.

While such an impedance is not to be found in the
canonical literature, it exists in the impedance model,
and is shown in the impedance plot of figure 2. The elec-
tric flux quantum is well matched to the larger of the two
electric dipole impedances of the electron, the ‘external’
dipole impedance, where the electric dipole impedances
are represented by large and small blue diamonds.

The impedance plot of figure 2 was generated with the
electron in mind, with no thought of the hydrogen atom
or the photon. It was only later that the photon was
added. The resulting smooth impedance match from the
photon at the Rydberg to the electron at the Bohr ra-
dius and the consequent ‘Bohr correspondence’ was a nice
serendipitous surprise.

As the head of the electric flux quantum wavepacket
arrives at the Bohr radius the (presumed Gaussian)
packet is still feeding increasing energy in from out
beyond the Rydberg. From figure 2 it can be seen
that at the Bohr radius there is a conjunction (upper
dashed circle) of the electron dipole impedance with
the scale invariant electric and magnetic vector Lorentz
impedances, the scale invariant centrifugal impedance,
and the scale dependent electric Coulomb and scalar
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FIG. 2. A composite of 13.6eV photon impedances and a variety of background independent electron impedances[12], measured
branching ratios of the π0, η, and η’, the four fundamental quantum lengths shown in fig.1, and the coherence lengths of the
unstable particles.[13–15]

Lorentz impedances. The details of the couplings be-
tween the modes associated with the impedances (phases,
confinement mechanisms,...) remain to be investigated.
At the outset it is tempting to say that one knows the
outcome (the H atom is ionized) and can work backwards
from there.

But where is the proton in this plot? Given that the
many many short-lived resonances between the 70MeV
classical radius and the 9.59GeV coherence line are ad-
equately represented by the subset shown (more on the
neutrino later), only the proton is absent. What is it that
the electron is ionized from by that 13.6eV photon? The
plot is in the rest frame of the electron.

The magnetic flux quantum, unlike the electric flux
quantum, arrives at the Bohr radius without benefit of
an impedance match from the scale of the Rydberg, but
presumably still phase-coherent. The excitation of the
Bohr magneton (an ‘internal impedance’ denoted by the

small red diamonds) at the Bohr radius is more of a shock
excitation, more broadband.

The possible existence of at least one scale invariant
magnetic impedance should be noted, present at the five
ohm conjunction (lower dashed circle) of the magnetic
flux quantum with the magnetic and the smaller of the
two electric dipole impedances. Detailed calculations
suggest that the measured quantum Hall impedance is
not just an electric impedance, but rather the sum of the
scale invariant electric and magnetic impedances.

It was shown earlier[3] that all massive particles have
an inertial impedance, a centrifugal impedance, repre-
sented by the green dots in figure 2. Similar to the case
of additional scale invariant magnetic impedances, one
might consider the existence of the corresponding addi-
tional scale invariant centrifugal impedances, and per-
haps the full family of invariant impedances associated
with the inverse square potentials.
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FIG. 3. The π0 branching tree

THE π0 BRANCHING RATIOS

The relatively simple π0 branching tree is shown in fig-
ure 3. As the image suggests, the impedance calculation
is done taking the paths in parallel.

As shown in figure 2, the π0 coherence length coincides
with the (inverse) Rydberg, where there is an impedance
match via the dipole mode. Ignoring the phases, the
impedance of the two photon mode can be written as

Zγγ =
1

1
Z0

+ 1
Z0

= 188.37 Ω (1)

and that of the e+e-γ mode as

Zeeγ =
1

1
RH

+ 1
RH

+ 4α2

Z0

= 12 813 Ω (2)

where RH = Z0

2α is the quantum Hall resistance, so that

Zπ0 =
1

1
Zγγ

+ 1
Zeeγ

= 185.64 Ω (3)

and the branching ratios are

Γγγ =
Zπ0
Zγγ

= 0.9855 (4)

Γeeγ =
Zπ0
Zeeγ

= 0.0145 (5)

These branching ratios are in agreement with the mea-
sured values shown in figures 2 and 3 at slightly better
than three parts per thousand, suggesting that higher
order corrections go as powers of ∼α

π .

THE η BRANCHING RATIOS

The more complex η branching tree is shown in figure
4. Here we follow the same method as in the previous
example, working from right to left in the figure as we
calculate. Again ignoring the phases, as well as factors of
two that will be addressed in the discussion that follows,
the impedance of the two photon mode can be written as

Zγγ =
1

2
Z0

+ 2
Z0

= 94.183 Ω (6)

FIG. 4. The η branching tree

The π0 impedance calculated in the previous section is
used to find that of the three π0 mode

Z3π0 =
2

1
Zπ0

+ 1
Zπ0

+ 1
Zπ0

= 123.76 Ω (7)

The impedance of the π+π−π0 mode is

Zπππ0 =
1

1
Zπ+

+ 1
Zπ−

+ 1
Zπ0

= 175.54 Ω (8)

where we assume the neutrino has rest mass, and
therefore a scale invariant centrifugal/quantum Hall
impedance

Zν = RH = 25 812.8 Ω (9)

so that the muon impedance is

Zµ =
RH
3

= 8 604.3 Ω (10)

The impedances of the charged pions are then

Zπ+ = Zπ− =
1

1
Zν

+ 1
Zµ

= 6 453.2 Ω (11)
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And finally the impedance of the π+π−γ mode is

Zππγ =
2

1
Zπ+

+ 1
Zπ−

+ 1
Z0

= 674.69 Ω (12)

so that the impedance of the η is

Zη =
2

1
Z0

+ 1
Z3π0

+ 1
Zπππ0

+ 1
Zππγ

= 38.644 Ω (13)

and the branching ratios are

Γγγ =
Zη
Zγγ

= 0.410 (14)

Γ3π0 =
Zη
Z3π0

= 0.312 (15)

Γπππ0 =
Zη

Zπππ0
= 0.220 (16)

Γππγ =
Zη
Zππγ

= 0.057 (17)

As can be seen from figure 4 (or the corresponding
modes of figure 5, for that matter), all four branching ra-
tios are in agreement with the measured values at better
than two parts per hundred.

THE η′ BRANCHING RATIOS

The η′ branching tree is shown in figure 5. Unsur-
prisingly, following the same method as in the previous
examples gives reasonable results for some but not all
branches. Looking at figure 2, it’s not hard to see why.

The π0 coherence length sits at the inverse Rydberg,
well isolated from perturbation due to either the η at
smaller length scales or τ and the charm family at greater
scales. Similarly, the η stands on its own at the Bohr
radius, with the Σ0 nearest neighbor.

Unlike the π0 and η, the η′ is in the thick of it, with
its coherence length at the Compton wavelength of the
electron, right in the middle of the mode structure of
the excited flavor states. It seems most probable that
coupling to those states (and perhaps other effects re-
sulting from the fact that in the impedance model the
electron Compton wavelength is taken to define a funda-
mental length, the quantization scale) will require a more
sophisticated treatment than that given the π0 and η.

Again looking at figure 2, it remains that the similarity
of the impedance structures at the Bohr radius and the
Compton wavelength likely accounts for the similarity
in the values of the relative branching ratios of the η
and η′ tabulated in the upper left corner of the figure.
The measured branching ratios of the largest mode are
equal, and the rest agree within a couple percent. Just
the players are different. The ratios are pretty much the
same, determined by the similar impedance structures.

FIG. 5. The η′ branching tree

FACTORS OF TWO

Unexplained factors of two are present in the
impedance model. The first, and most bothersome, is
in the definition of the quantum Hall resistance,

RH =
Z0

2α
(18)

That factor of two is present in the vertical scale of fig-
ures 1 and 2, but absent from the horizontal scale. Yep. I
jiggered the horizontal scale. If one looks at the mathcad
file that generates the figures[12], it becomes apparent.
While the Compton radius is where it belongs, according
to the calculations the impedance conjunctions associ-
ated with the ‘classical’ radius should be not at

rclassical = αλCompton (19)

but rather a factor of two closer, at

rjunction =
α

2
λCompton (20)

Similarly, the conjunctions at the Bohr radius are a factor
of two closer to the Compton wavelength, those at the
Rydberg a factor of four,... A simple solution could be to
take RH = Z0

α rather than RH = Z0

2α . At the time that
seemed like a radical step.

Factor of two offsets are also present in the scale de-
pendent impedances, and in the corresponding work of
MacGregor[15] as well. As mentioned earlier[3], with-
out understanding how to properly attribute them (after
all, the impedance model is yet in its infancy) and in
the interest of simplicity, they were kept in mind but
eliminated from the model until such time as they were
in need of attention. They will likely be of help in un-
tangling the mode structures, in exploring connections
between impedances and say quarks and gluons,...
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FIG. 6. Alternation of dark and observable with topology

DISCUSSION

The impedance plot of figure 2 is not complete. Absent
are the longitudinal dipole-dipole impedances, the lon-
gitudinal and transverse charge-dipole impedances (the
charge-dipole impedances are scale invariant), and the
Coriolis impedance. There may be others, and likely are.
Given the spin dependence of the weak interaction, one
would expect that adding the longitudinal impedances
to the figure would give additional insight into the weak
decays, likely essential for instance in impedance-based
calculations of those branching ratios.

Present in the plot are several impedances that (ex-
cepting the unstable particle spectrum) are absent in our
observations of the world, do not couple to the photon,
namely those associated with the electric flux quantum,
magnetic monopole, and electric dipole. Figure 6 shows
this alternation between electric and magnetic with topo-
logical complexity.

We see the magnetic flux quantum, electric monopole,
and magnetic dipole in the stable particles which com-
prise our bodies and the air we breathe, but not their
electromagnetic complements. It seems that the only
place we see these ‘dark’ components is in the unstable
particle spectrum. The origin of this broken symmetry
is partially understood in the impedance model[3]. How-
ever, its role in the chiral anomaly is not yet obvious.

The impedance approach gives a fresh perspective on
anomalies in quantum theory. The chiral anomaly exists
in theories of gravity as well. In that case it would seem
that there are at least three scale invariant impedances
that must be considered - three body, centrifugal, and
Coriolis. The question is whether proper consideration
of these impedances, whether an impedance approach to
gravitation, would be anomaly free as well.

CONCLUSION

Impedances govern the flow of energy. This is a fun-
damental concept. Historically, it has been overlooked
in quantum theory. The first quantum impedance to be
discovered, the quantum Hall impedance (an axial vector
impedance), was found in 1980, long after the founda-
tions of QED were set in stone and QCD was ascendant.

Despite the remarkable elegance and power of the stan-
dard model, proton spin structure remains a mystery[16–
19]. The hope is that this preliminary impedance ap-

proach to phenomena associated with the chiral anomaly
will motivate and illuminate the role of the anomaly in
proton spin, and a deeper understanding of spin itself.
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