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Abstract

The fluid equations, named after Claude-Louis Navier and George Gabriel Stokes, describe the motion of
fluid substances. These equations arise from applying Newton’s second law to fluid motion, together with the
assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of
velocity) and a pressure term - hence describing viscous flow. Due to specific of NS equations they could be
transformed to full/partial inhomogeneous parabolic differential equations: differential equations in respect of
space variables and the full differential equation in respect of time variable and time dependent inhomogeneous
part. Finally, orthogonal polynomials as the partial solutions of obtained Helmholtz equations were used for
derivation of analytical solution of incompressible fluid equations in 1D, 2D and 3D space for rectangular boundary.
Solution in 3D space for any shaped boundary is expressed in term of 3D global solution of 3D Helmholtz equation
accordantly.

1 Introduction

In physics, the fluid equations, named after Claude-Louis Navier and George Gabriel Stokes, describe fluid substances
motion. These equations arise from applying Newton’s second law to fluid motion, together with the assumption that
the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure
term - hence describing viscous flow. Equations were introduced in 1822 by the French engineer Claude Louis Marie
Henri Navier [1] and successively re-obtained, by different arguments, by a several authors including Augustin-Louis
Cauchy in 1823 [2], Simeon Denis Poisson in 1829, Adhemar Jean Claude Barre de Saint-Venant in 1837, and, finally,
George Gabriel Stokes in 1845 [3]. Detailed and thorough analysis of the history of the fluid equations could be
found in by Olivier Darrigol [4]. The invention of the digital computer led to many changes. John von Neumann,
one of the CFD founding fathers, predicted already in 1946 that automatic computing machines’ would replace
the analytic solution of simplified flow equations by a numerical’ solution of the full nonlinear flow equations for
arbitrary geometries. Von Neumann suggested that this numerical approach would even make experimental fluid
dynamics obsolete. Von Neumann’s prediction did not fully come true, in the sense that both analytic theoretical
and experimental research still coexist with CFD. Crucial properties of CFD methods such as consistency, stability
and convergence need mathematical study [5].

Aims of this article are to propose new approach for solution of incompressible fluid equations. The article has
three basic parts: first part explains how to solve NS in one dimension, second part extend solution to two-dimensional
space and, finally, third part summarize with three-dimensional space.

2 Parabolic formulation of equations

Incompressible fluid equations are expressed as follow

ρ

(
∂v

∂t
+ (v · ∇)v

)
− µ∆v +∇p = f (1)

∂ρ

∂t
+∇ · (ρv) = 0 (2)
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where equation (2) for incompressible flow reduces to dρ
dt = 0 or ρ = const due to ∇ · v = 0. Equations of fluid

motion (1) could be expressed in full time derivative replacing covariant time derivative by

d

dt
=

∂

∂t
+ (v · ∇) (3)

So, we obtain
dv

dt
− a2∆v =

1

ρ
(−∇p+ f) (4)

3 inhomogeneous parabolic like equation for full time derivative, where a =
√
µ/ρ.

3 One dimensional inhomogeneous solution

Consider the initial-boundary value problem for v = v(x, t)

dv

dt
− a2∆v =

1

ρ
(−∇p+ f) in Ω× (0,∞) (5)

v(x, 0) = v0(x) x ∈ Ω (6)

∂v

∂n
= 0 on ∂Ω× (0,∞) (7)

where p = p(x, t) and f = f(x, t), Ω ⊂ Rn, n the exterior unit normal at the smooth parts of ∂Ω, a2 a positive
constant and v0(x) a given function.

So according to [6] equation (4), when x is scaled to a = 1, could be rewritten as follow

dv

dt
= vxx +Q(x, t), x ∈ Ω, t > 0 (8)

We expand v and Q in the eigenfunctions sin (nπxL ) on space Ω ∈ [0, L] where sin(nπxL ) and sin(mπxL ) functions
orthogonality could be applied. So, we obtain

Q(x, t) =

∞∑
n=1

qn(t) sin (
nπx

L
) (9)

with

qn(t) =
1

I1

∫
Ω

Q(x, t) sin (
nπx

L
)dx (10)

I1 =

∫
Ω

sin2 (
nπx

L
)dx =

L

2
(11)

and

v(x, t) =

∞∑
n=1

un(t) sin (
nπx

L
) (12)

Thus we get the inhomogeneous ODE

u̇n(t) +
(nπ
L

)2

un(t) = qn(t), (13)

whose solution is

un(t) = un(0) exp (−(nπ/L)2t) +

∫ t

0

qn(τ) exp (−(nπ/L)2(t− τ))dτ (14)

where

un(0) =
1

I1

∫
Ω

v0(x) sin (
nπx

L
)dx (15)

Again, we substitute all obtained equations into (12) and have

v(x, t) =

∫
Ω

v0(s)(

∞∑
n=1

1

I1
sin (

nπs

L
) sin (

nπx

L
) exp (−(nπ/L)2t))ds

+

∫
Ω

ds

∫ t

0

Q(s, τ)(

∞∑
n=1

1

I1
sin (

nπs

L
) sin (

nπx

L
) exp (−(nπ/L)2(t− τ)))dτ (16)
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Now we must apply continuity condition ∇·v = ∂
∂xv(x, t) = 0. This is equation of extreme for coordinate x. Solving

this equation gives extreme point xex. Finally, solution of 1D incompressible Navier-Stokes equation is

v(t) =

∫
Ω

v0(s)(

∞∑
n=1

1

I1
sin (

nπs

L
) sin (

nπxex
L

) exp (−(nπ/L)2t))ds

+

∫
Ω

ds

∫ t

0

Q(s, τ)(

∞∑
n=1

1

I1
sin (

nπs

L
) sin (

nπxex
L

) exp (−(nπ/L)2(t− τ)))dτ (17)

If we investigate each point of fluid in moving coordinate system of this point, Galilean transform must by applied
v(r0 − vt, t).

4 Two dimensional inhomogeneous solution

Consider the initial-boundary value problem for v = v(x, y, t)

dvi

dt
− a2∆vi =

1

ρ
(−∇ip+ fi) in Ω× (0,∞) (18)

vi(x, y, 0) = vi0(x, y) x, y ∈ Ω (19)

∂vi

∂n
= 0 on ∂Ω× (0,∞) (20)

where p = p(x, y, t) and f = f(x, y, t), Ω ⊂ R2n, n the exterior unit normal at the smooth parts of ∂Ω, a2 a positive
constant and vx0 (x, y), vy0 (x, y) a given function.

So, when x and y scale was determined to a = 1, equation (4) could be rewritten as follow

dvi

dt
= vixx + viyy +Qi(x, y, t), x, y ∈ Ω, t > 0 (21)

4.1 Rectangular boundary

We expand v and Q in the eigenfunctions exp ( jnπxLx
) exp ( jmπyLy

) on space Ω ∈ [0, Lx] × [0, Ly] where exp ( jnπxLx
)

exp ( jmπyLy
) and exp ( jn

′πx
Lx

) exp ( jm
′πy
Ly

) functions orthogonality could be applied, where j =
√
−1. So, we obtain

Qi(x, y, t) =

∞∑
m,n=1

qimn(t) exp (
jnπx

Lx
) exp (

jmπy

Ly
) (22)

with

qimn(t) =
1

I2

∫∫
Ω

Qi(x, y, t) exp (
jnπx

Lx
) exp (

jmπy

Ly
)dxdy (23)

I2 =

∫∫
Ω

(exp (
jnπx

Lx
) exp (

jmπy

Ly
))2dxdy (24)

and

vi(x, y, t) =

∞∑
m,n=1

uimn(t) exp (
jnπx

Lx
) exp (

jmπy

Ly
) (25)

Thus we get the inhomogeneous ODE

u̇imn(t) + k2
mnu

i
mn(t) = qimn(t), (26)

k2
mn =

(
nπ

Lx

)2

+

(
mπ

Ly

)2

(27)

whose solution is

uimn(t) = uimn(0) exp (−k2
mnt) +

∫ t

0

qijmn(τ) exp (−k2
mn(t− τ))dτ (28)

3



where

uimn(0) =
1

I2

∫∫
Ω

vi0(x, y) exp (
jnπx

Lx
) exp (

jmπy

Ly
)dxdy (29)

Again, we substitute all obtained equations into (25) and have

vi(x, y, t) =

∫∫
Ω

vi0(s′, s)(

∞∑
m,n=1

1

I2
exp (

jnπs

Lx
+
jmπs′

Ly
+
jnπx

Lx
+
jmπy

Ly
− k2

mnt))ds
′ds

+

∫∫
Ω

ds′ds

∫ t

0

Qi(s′, s, τ)(

∞∑
m,n=1

1

I2
exp (

jnπs

Lx
+
jmπs′

Ly
+
jnπx

Lx
+
jmπy

Ly
− k2

mn(t− τ)))dτ (30)

Now we must apply continuity condition ∇ ·v = ∂vx(x,y,t)
∂x + ∂vy(x,y,t)

∂y = 0. So we obtain relation conditions between

vx0mnf and vy0mnf , Qxmnf and Qymnf

(vx0nmf +Qxnmf )
nπ

Lx
+ (vy0nmf +Qynmf )

mπ

Ly
= 0 (31)

where vi0f , Q
i
f are

vi0nmf =
1

I2

∫∫
Ω

vi0(s′, s) exp (
jnπs

Lx
+
jmπs′

Ly
)ds′ds (32)

Qinmf =
1

I2

∫∫
Ω

ds′ds

∫ t

0

Qi(s′, s, τ) exp (
jnπs

Lx
+
jmπs′

Ly
+ k2

mnτ)ds′dsdτ (33)

Finally, solutions of 2D incompressible Navier-Stokes equations are

vx(x, y, t) =

∞∑
m,n=1

(vx0mnf +Qxmnf ) exp (−
jπmx(vy0mnf +Qymnf )

Ly(vx0mnf +Qxmnf )
−
jπny(vx0mnf +Qxmnf )

Lx(vy0mnf +Qymnf )
− k2

mnt), (34)

vy(x, y, t) =

∞∑
m,n=1

(vy0mnf +Qymnf ) exp (−
jπmx(vy0mnf +Qymnf )

Ly(vx0mnf +Qxmnf )
−
jπny(vx0mnf +Qxmnf )

Lx(vy0mnf +Qymnf )
− k2

mnt). (35)

If we investigate each point of fluid in moving coordinate system of this point, Galilean transform must by applied
v(r0 − vt, t).

4.2 Any shaped boundary

For any shaped boundary ∂Ω, equation (22) could be replaced by

Qi(x, y, t) =

∞∑
m,n=1

qimn(t)Hmn
∂Ω (x)Hmn

∂Ω (y) (36)

and equation (25) by

vi(x, y, t) =

∞∑
m,n=1

uimn(t)Hmn
∂Ω (x)Hmn

∂Ω (y). (37)

where Hmn
∂Ω (x)Hmn

∂Ω (y) are partial solutions of Helmholtz 2D equation for given boundary ∂Ω and could be taken for
example from [7]. So equation (30) transforms to

vi(x, y, t) =

∞∑
m,n=1

(vi0mnf +Qimnf )Hmn
∂Ω (x)Hmn

∂Ω (y) exp (−k2
mnt) (38)

vimnf =
1

I2mn

∫∫
Ω

vi0(s′, s)Hmn
∂Ω (s)Hmn

∂Ω (s′)ds′ds (39)

Qimnf =
1

I2mn

∫∫
Ω

ds′ds

∫ t

0

Qi(s′, s, τ)Hmn
∂Ω (s)Hmn

∂Ω (s′) exp (k2
mnτ))dτ (40)
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where I2mn is expressed as follow

I2mn =

∫∫
∂Ω

(Hmn
∂Ω (x)Hmn

∂Ω (y))2dxdy. (41)

Applying of continuity condition ∇·v = 0 gives similar to equations (31)(34)(35) relations between n and m. Finally,
we obtain

vi(x, y, t) =

∞∑
n=1

(vi0m(n)nf +Qim(n)nf )H
m(n)n
∂Ω (x)H

m(n)n
∂Ω (y) exp (−k2

m(n)nt) (42)

where m(n) notes dependence of m and n. If we investigate each point of fluid in moving coordinate system of this
point, Galilean transform must by applied v(r0 − vt, t).

5 Three dimensional inhomogeneous solution

Consider the initial-boundary value problem for v = v(x, y, z, t)

dvi

dt
− a2∆vi =

1

ρ
(−∇ip+ fi) in Ω× (0,∞) (43)

vi(x, y, z, 0) = vi0(x, y, z) x, y, z ∈ Ω (44)

∂vi

∂n
= 0 on ∂Ω× (0,∞) (45)

where p = p(x, y, z, t) and f = f(x, y, z, t), Ω ⊂ R3n, n the exterior unit normal at the smooth parts of ∂Ω, a2 a
positive constant and vx0 (x, y, z), vy0 (x, y, z), vz0(x, y, z) a given function.

So, when x, y and z scale was determined to a = 1, equation (4) could be rewritten as follow

dvi

dt
= vixx + viyy + vizz +Qi(x, y, z, t), x, y, z ∈ Ω, t > 0 (46)

If we investigate each point of fluid in moving coordinate system of this point, Galilean transform must by applied
v(r0 − vt, t).

5.1 Rectangular boundary

We expand v and Q in the eigenfunctions exp ( jnπxLx
) exp ( jmπyLy

) exp ( jpπzLz
) on space Ω ∈ [0, Lx]×[0, Ly]×[0, Lz] where

exp ( jnπxLx
) exp ( jmπyLy

) exp ( jpπzLz
) and exp ( jn

′πx
Lx

) exp ( jm
′πy
Ly

) exp ( jp
′πz
Lz

) functions orthogonality could be applied. So,

we obtain

Qi(x, y, z, t) =
∞∑

m,n,p=1

qimn(t) exp (
jnπx

Lx
) exp (

jmπy

Ly
) exp (

jpπz

Lz
) (47)

with

qimnp(t) =
1

I3

∫∫∫
Ω

Qi(x, y, z, t) exp (
jnπx

Lx
) exp (

jmπy

Ly
) exp (

jpπz

Lz
)dxdydz (48)

I3 =

∫∫∫
Ω

(exp (
jnπx

Lx
) exp (

jmπy

Ly
) exp (

jpπz

Lz
))2dxdydz (49)

and

vi(x, y, z, t) =

∞∑
m,n,p=1

uimn(t) exp (
jnπx

Lx
) exp (

jmπy

Ly
) exp (

jpπz

Lz
) (50)

Thus we get the inhomogeneous ODE

u̇imnp(t) + k2
mnpu

i
mnp(t) = qimnp(t), (51)

k2
mnp =

(
nπ

Lx

)2

+

(
mπ

Ly

)2

+

(
pπ

Ly

)2

(52)
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whose solution is

uimnp(t) = uimnp(0) exp (−k2
mnpt) +

∫ t

0

qimnp(τ) exp (−k2
mnp(t− τ))dτ (53)

where

uimnp(0) =
1

I3

∫∫∫
Ω

vi0(x, y, z) exp (
jnπx

Lx
) exp (

jmπy

Ly
) exp (

jpπz

Lz
)dxdydz (54)

Again, we substitute all obtained equations into (50) and have

vi(x, y, z, t) =

∫∫∫
Ω

vi0(s′′, s′, s)(

∞∑
m,n,p=1

1

I3
Smnp(s, s

′, s′′)Smnp(x, y, z) exp (−k2
mnpt))ds

′′ds′ds

+

∫∫∫
Ω

ds′′ds′ds

∫ t

0

Qi(s′′, s′, s, τ)(

∞∑
m,n,p=1

1

I3
Smnp(s, s

′, s′′)Smnp(x, y, z) exp (−k2
mnp(t− τ)))dτ (55)

Smnp(x, y, z) = exp (
jnπx

Lx
) exp (

jmπy

Ly
) exp (

jpπz

Lz
) (56)

Now we must apply continuity condition ∇ · v = ∂vx(x,y,z,t)
∂x + ∂vy(x,y,z,t)

∂y + ∂vz(x,y,z.t)
∂z = 0. So we obtain relation

conditions between n, m and p

(vx0nmpf +Qxnmpf )
nπ

Lx
+ (vy0nmpf +Qynmpf )

mπ

Ly
+ (vz0nmpf +Qznmpf )

pπ

Lz
= 0 (57)

where vi0f , Q
i
f are

vi0mnpf =
1

I3

∫∫∫
Ω

vi0(s′′, s′, s)Smnp(s, s
′, s′′)ds′′ds′ds (58)

Qimnpf =
1

I3

∫∫∫
Ω

ds′′ds′ds

∫ t

0

Qi(s′′, s′, s, τ)Smnp(s, s
′, s′′)ds′′ds′dsdτ (59)

Finally, solutions of 3D incompressible Navier-Stokes are

vi(x, y, z, t) =

∞∑
m,n=1

(vi0mnpf +Qimnpf )Smnp(m,n)(x, y, z) exp (−k2
mnp(m,n)t) (60)

Smnp(m,n)(x, y, z) = exp (
jnπx

Lx
) exp (

jmπy

Ly
) exp (

jp(m,n)πz

Lz
) (61)

where integers p(m,n) must satisfy (57) relations for each m and n and could be expressed by substituting of p/Lz
corresponding expression as the sum of two others n/Lx,m/Ly. If we investigate each point of fluid in moving
coordinate system of this point, Galilean transform must by applied v(r0 − vt, t).

5.2 Any shaped boundary

For any shaped boundary ∂Ω, equation (47) could be replaced by

Qi(x, y, z, t) =

∞∑
m,n,p=1

qi(t)Hmnp
∂Ω,k(x, y, z) (62)

and

vi(x, y, z, t) =

∞∑
m,n,p=1

ui(t)Hmnp
∂Ω,k(x, y, z) (63)

where Hmnp
∂Ω,k(x, y, z) are partial solutions of Helmholtz 3D equation for given boundary ∂Ω. and could be taken for

example from [8].So equation (55) transforms to

vi(x, y, z, t) =
∞∑

m,n=1

(vi0mnpf +Qimnp)H
mnp
∂Ω,k(x, y, z) exp (−k2

mnpt) (64)

vi0mnpf =

∫∫∫
Ω

vi0(s′′, s′, s)Hmnp
∂Ω,k(s, s′, s′′)ds′′ds′ds (65)

Qimnp =

∫∫∫
Ω

ds′′ds′ds

∫ t

0

Qi(s′′, s′, s, τ)Hmnp
∂Ω,k(s, s′, s′′) exp (k2

mnpτ)dτ (66)
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Applying of continuity condition ∇ · v = 0 gives relations between n,m and p or p = p(m,n). Finally, we obtain

vi(x, y, z, t) =

∞∑
m,n=1

(vi0mnf +Qimn)H
mnp(m,n)
∂Ω,k (x, y, z) exp (−k2

mnp(mn)t) (67)

If we investigate each point of fluid in moving coordinate system of this point, Galilean transform must by applied
v(r0 − vt, t).

6 Conclusions

Due to the form of fluid equations they could be transformed into the full/partial inhomogeneous parabolic differential
equations: differential equations in respect to space variables and full differential equations in respect to the time
variable and inhomogeneous time dependent part. Finally, orthogonal polynomials as the partial solutions of obtained
Helmholtz equations were used for derivation of analytical solution of velocities for incompressible fluid in 1D, 2D
and 3D space for rectangular boundary. Solution in 3D space for any shaped boundary is expressed in term of 3D
global solution of 3D Helmholtz equation accordantly.
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