# The complete classification of self-similar solutions of the Navier-Stokes equations for incompressible flow 

Sergey V. Ershkov<br>Institute for Time Nature Explorations, M.V. Lomonosov's Moscow State University, Leninskie gory, 1-12, Moscow 119991, Russia<br>e-mail: sergej-ershkov@yandex.ru

A new classification of self-similar solutions of the Navier-Stokes system of equations is presented here.

The equation of momentum has been split into the sub-system of 2 equations: an irrotational (curl-free) one, and a solenoidal (divergence-free) one.

The irrotational (curl-free) equation used for obtaining of the components of pressure gradient. As a term of such an equation, we used the irrotational (curl-free) vector field of flow velocity (potential of which should be a harmonic function).

Then we consider equation for solenoidal (divergence-free) field of flow velocity in the proper rotating co-ordinate system. Such a transition transforms the equation of motion to the Helmholtz vector differential equation.

The inverse transformation from the rotating system to ordinary Cartesian coordinate system is possible only in case of constant angular velocity of rotation of such a system. The Helmholtz differential equation can be solved by separation of variables in only 11 coordinate systems, so it forms a complete set of all possible cases of self-similar solutions for Navier-Stokes system of equations.

Keywords: Navier-Stokes equations, self-similar solutions, incompressible flow.

## 1. Introduction, the Navier-Stokes system of equations.

In accordance with [1-2], the Navier-Stokes system of equations for incompressible flow of Newtonian fluids should be presented as below:

$$
\begin{gather*}
\nabla \cdot \vec{u}=0  \tag{1.1}\\
\frac{\partial \vec{u}}{\partial t}+(\vec{u} \cdot \nabla) \vec{u}=-\frac{\nabla p}{\rho}+v \cdot \nabla^{2} \vec{u}+\vec{F}, \tag{1.2}
\end{gather*}
$$

- where $\boldsymbol{u}$ is the flow velocity, a vector field; $\rho$ is the fluid density, $p$ is the pressure, $v$ is the kinematic viscosity, and $\boldsymbol{F}$ represents body forces (per unit of mass in a volume) acting on the fluid and $\nabla$ is the del (nabla) operator. Let us also choose the Oz axis coincides to the main direction of flow propagation.

In the differential equations, a local description of the fields, the nabla symbol $\nabla$ denotes the three-dimensional gradient operator, and from it $\nabla$. is the divergence operator and $\nabla \times$ is the curl operator.

The system of Navier-Stokes equations is known to be the system of the mixed parabolic and hyperbolic type.

## 2. The originating system of PDE for Navier-Stokes Eq.

Using the identity $(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}=(1 / 2) \nabla\left(\boldsymbol{u}^{2}\right)-\boldsymbol{u} \times(\nabla \times \boldsymbol{u})$, and then using the curl of the curl identity $\nabla \times(\nabla \times \boldsymbol{u})=\nabla(\nabla \cdot \boldsymbol{u})-\nabla^{2} \boldsymbol{u}$, we could present the Navier-Stokes equations in the case of incompressible flow of Newtonian fluids as below:

$$
\begin{align*}
& \nabla \cdot \vec{u}=0 \\
& \frac{\partial \vec{u}}{\partial t}=\vec{u} \times \vec{w}+v \cdot \nabla^{2} \vec{u}-\left(\frac{1}{2} \nabla\left(u^{2}\right)+\frac{\nabla p}{\rho}-\vec{F}\right) \tag{2.1}
\end{align*}
$$

- here we denote the curl field $\boldsymbol{w}$, a pseudovector field (time-dependent).

The system of equation (2.1) is equivalent to the Navier-Stokes system of equations for incompressible Newtonian fluids (1.1)-(1.2) in the sense of existence and smoothness of a general solution.

Let us denote as below (according to the Helmholtz fundamental theorem of vector calculus):

$$
\begin{array}{ll}
\nabla \times \vec{u} \equiv \vec{w}, & \vec{u} \equiv \vec{u}_{p}+\vec{u}_{w} \\
\nabla \cdot \vec{u}_{w} \equiv 0, & \nabla \times\left(\vec{u}_{p}\right) \equiv 0,
\end{array}
$$

- where $\boldsymbol{u}_{p}$ is an irrotational (curl-free) field of flow velocity, and $\boldsymbol{u}_{w}$ - is a solenoidal (divergence-free) field of flow velocity which generates a curl field $\boldsymbol{w}$ :

$$
\vec{u}_{p} \equiv \nabla \varphi, \quad \vec{u}_{w} \equiv \nabla \times \vec{A}
$$

- here $\varphi$ - is the proper scalar potential, $\boldsymbol{A}-$ is the appropriate vector potential.

We could obtain from the 1 -st equation of (2.1) the equality below

$$
\begin{equation*}
\nabla \cdot(\nabla \varphi+\nabla \times \vec{A})=0, \quad \Rightarrow \quad \Delta \varphi=0 \tag{2.2}
\end{equation*}
$$

- it means that $\varphi$ - is the proper harmonic function [3].

Thus, the 2-nd equation of (2.1) could be presented as the system of equations below:

$$
\left\{\begin{array}{l}
\frac{\partial(\nabla \varphi)}{\partial t}=(\nabla \varphi) \times\left(\nabla \times \vec{u}_{w}\right)-\left(\frac{1}{2} \nabla\left\{\left(\nabla \varphi+\vec{u}_{w}\right)^{2}\right\}+\frac{\nabla p}{\rho}-\vec{F}\right)  \tag{2.3}\\
\frac{\partial \vec{u}_{w}}{\partial t}=\vec{u}_{w} \times\left(\nabla \times \vec{u}_{w}\right)+v \cdot \nabla^{2} \vec{u}_{w}
\end{array}\right.
$$

- so, if we solve the second equation of (2.3) for the components of vector $\boldsymbol{u}_{w}$, we could substitute it into the 1 -st equation of (2.3) for obtaining of a proper expression for vector function $\nabla p$ :

$$
\begin{equation*}
\frac{\nabla p}{\rho}=(\nabla \varphi) \times\left(\nabla \times \vec{u}_{w}\right)+\vec{F}-\frac{\partial(\nabla \varphi)}{\partial t}-\frac{1}{2} \nabla\left\{\left(\nabla \varphi+\vec{u}_{w}\right)^{2}\right\}, \tag{2.4}
\end{equation*}
$$

- where $\varphi$ - is the proper harmonic function, see Eq. (2.2).

So, the key equation of Navier-Stokes equations in the case of incompressible flow for Newtonian fluids could be presented in a form below:

$$
\begin{equation*}
\frac{\partial \vec{u}_{w}}{\partial t}=\vec{u}_{w} \times\left(\nabla \times \vec{u}_{w}\right)+v \cdot \nabla^{2} \vec{u}_{w} \tag{2.5}
\end{equation*}
$$

Let us consider equation (2.5) in the rotating co-ordinate system by adding of the proper Coriolis force to the equation of motion (2.5) as below

$$
\frac{\partial \vec{u}_{w}}{\partial t}-2 \vec{\Omega} \times \vec{u}_{w}=\vec{u}_{w} \times\left(\nabla \times \vec{u}_{w}\right)+v \cdot \nabla^{2} \vec{u}_{w},
$$

- where $\boldsymbol{\Omega}$ - is the angular velocity, for which the equality below is valid in the case of Newtonian fluids [2]:

$$
\boldsymbol{\Omega}=\left(\nabla \times \boldsymbol{u}_{w}\right) / 2
$$

So, the equation of motion (2.5) should be presented in the rotating co-ordinate system as below

$$
\begin{equation*}
\frac{\partial \vec{u}_{w}}{\partial t}=v \cdot \nabla^{2} \vec{u}_{w} \tag{2.6}
\end{equation*}
$$

The inverse transformation of exact solutions from the rotating system to ordinary Cartesian coordinate system is possible only in case $\Omega=$ const.

## 3. Classification of exact solutions for Navier-Stokes Eq.

For non-stationary solutions $\partial \partial \mathrm{t} \neq 0$, Eq. (2.6) could be solved analytically only in the cases below:

1) $\partial \partial \mathrm{t} \sim \partial \partial \mathrm{z}$ - it means that the Oz axis represents a preferential direction similar to the time arrow in mechanical processes [4];
2) Time-dependent self-similar case, $\boldsymbol{u}_{w}=\exp (-\omega \mathrm{t}) \cdot \boldsymbol{u}_{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \omega=$ const $>0$ (frequency-parameter).

For the time-dependent self-similar case, equation (2.6) should be presented as below

$$
\begin{equation*}
\nabla^{2} \vec{u}_{w}+\left(\frac{\omega}{v}\right) \vec{u}_{w}=0 \tag{3.1}
\end{equation*}
$$

- which is the proper Helmholtz differential equation for vector fields $\boldsymbol{u}_{w}$ [2].

The Helmholtz differential equation can be solved by separation of variables in only 11 coordinate systems, 10 of which (with the exception of confocal paraboloidal coordinates) are particular cases of the confocal ellipsoidal system: Cartesian, confocal ellipsoidal, confocal paraboloidal, conical, cylindrical, elliptic cylindrical, oblate spheroidal, paraboloidal, parabolic cylindrical, prolate spheroidal, and spherical coordinates [5-6].

Thus, above 11 classes form a complete set of all possible cases of self-similar solutions for Navier-Stokes system of equations.

## 4. Conclusion.

A new classification of self-similar solutions of the Navier-Stokes system of equations is presented here. The equation of momentum should be split into the sub-system of 2 equations: an irrotational (curl-free) one, and a solenoidal (divergence-free) one. The irrotational (curl-free) equation used for obtaining of the components of pressure gradient $\nabla p$. As a term of such an equation, we used the irrotational (curl-free) vector field of flow velocity, which is given by the proper potential (besides, the continuity equation determines such a potential as a harmonic function).

Then we consider the equation for solenoidal (divergence-free) field of flow velocity in the rotating co-ordinate system. Such a transition transforms the equation of motion to the Helmholtz vector differential equation. The inverse transformation from the rotating system to ordinary Cartesian coordinate system is possible only in the case of constant angular velocity of rotation. The Helmholtz differential equation can be solved by separation of variables in only 11 coordinate systems, so it forms a complete set of all possible cases of self-similar solutions for Navier-Stokes system of equations.

## References:

[1]. Ladyzhenskaya, O.A. (1969), The Mathematical Theory of viscous Incompressible Flow (2nd ed.).
[2]. Landau, L. D.; Lifshitz, E. M. (1987), Fluid mechanics, Course of Theoretical Physics 6 (2nd revised ed.), Pergamon Press, ISBN 0-08-033932-8.
[3]. Kamke E. (1971). Hand-book for Ordinary Differential Eq. Moscow: Science.
[4]. Shvedov V.G. Can Quantum Mechanics explain the Evolution of the Universe? http://arxiv.org/abs/1104.2921v1
[5]. Moon, P. and Spencer, D. E. Eleven Coordinate Systems and The Vector Helmholtz Equation §1 and 5 in Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 1-48 and 136-143, 1988. See also: http://mathworld.wolfram.com/HelmholtzDifferentialEquation.html
[6]. Eisenhart, L. P. Separable Systems of Stäckel. Ann. Math. 35, 284-305, 1934. See also: http://mathworld.wolfram.com/HelmholtzDifferentialEquation.html

