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Einstein's Background 
In the beginning God created the heavens and the earth. Now the earth was formless and 

empty, darkness was over the surface of the deep, and the Spirit of God was hovering over the 
waters. And God said, "Let there be light," and there was light.  

   Thora, Genesis 1:1-3 
 

Abstract 
This review of relativistic physics integrates the works of Hamilton, Grassmann, Maxwell, 
Clifford, Einstein, Hestenes and lately the Cambridge (UK) Geometric Algebra Research 
Group. We start with the geometric algebra of spacetime (STA). We show how frames and 
trajectories are described and how Lorentz transformations acquire their fundamental rotor 
form. Spacetime dynamics deals with spacetime rotors, which have invariant and frame 
dependent splits. Spacetime rotor equations yield the proper acceleration (bivector) and the 
Fermi (vector) derivative.  

A first application is given with the relativistic STA formulation of the Lorentz force law, 
leading to the description of spin precession in magnetic fields and Thomas precession. Now 
the stage is ready for introducing the STA Maxwell equation, which combines all 4 equations 
in one single STA equation. STA has procedures to extract from the electromagnetic field 
strength bivector F, electric and magnetic fields (also for relative motion observers) and field 
invariants, field momentum and stress-energy tensor. The Leonhard-Wiechert potential gives 
the retarded field of a point charge.  

In addition we formulate the Dirac equation in STA, both massless and massive. From the 
Dirac equation we can derive STA expressions for Dirac observables. Plane wave states are 
described with the help of rotor decomposition. Finally we briefly review a STA gauge theory 
of gravity built on displacement and rotation gauge principles.  

 
 
1 History 
 
This paper is based on my ICR 2005 lecture in Amravati (India) on Wed. 12 Jan. 2005. I want to begin with 
a few historical remarks. Gauss, Rodgrigues and Hamilton invented quaternions in the first half of the 19th 
century [1]. Grassmann invented exterior algebra, the branch of mathematics, which according to him far 
surpasses all others [2]. In 1873 Maxwell’s four partial differential equations were published in a fully 
developped form [3]. In 1878 W.K. Clifford applied Grassmann’s algebra to create geometric algebras 
(GA), ultimately unifying Grassmann’s and Hamilton’s great ideas [4]. Clifford has speculated that 
physical space was curved (thus partly anticipating Einstein), and thought that “the ether and matter” were 
made of the “same stuff” [5]. 

In 1905 Einstein introduced the special theory of relativity (STR) and in 1915 he lectured before the 
Prussian Academy of Sciences on general relativity (GR), the curved space theory of gravity. In the 1960ies 
Hestenes reinvigorated the study of geometric algebra applied to physics in the form of spacetime algebra 
(STA) [6]. Amongst many followers, the Cambride (UK) Geometric Algebra Research Group (GARG) at the 
Cavendish institute systematically embraced Hestenes’ approach, regarding GA as a general matematical 
framework for physics [7,8]. An excellent review of a gauge theory of gravity with geometric calculus 
(invented by the GARG group) was recently presented by Hestenes [9]. Geometric calculus simply means 
GA multivector calculus.  

Nowadays the study and application of geometric algebras has spread to virtually all fields of science, 
including technological applications in image processing, robotics, speech analysis, etc. [16]. But we 
narrowly focus our attention to the description of STR, electromagnetism, relativistic quantum theory and 
general relativity within STA. We will mainly rely on [6,7,8,9]. 

It is wellknown that Einstein descended from a Jewish family. So one of the books he may have become 
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familiar with already in early childhood may well have been the Jewish Thora, which begins with the famous 
account of the creation (Genesis) of the universe quoted above.  

 
2 Introduction to Spacetime Algebra (STA) 
 
2.1 Geometric Product 
 
Two vectors a,b in Minkowski space are multiplied with the associative geometric product: 

ab = |a||b|(cos α + i sin α), 

where i = e1e2  is unit area element (bivector) of the a,b plane. The product has a symmetric scalar inner 
part 

a b ab ba 2 a b cos  

and an antisymmetric bivector outer part (fully representing the parallelogram area spanned by the two 
vectors in space together with its direction and orientiation) 

a∧b = (ab−ba)/2 = |a||b| i sin α. 
 
2.2 Reflections and Rotations 
 
A very important use of the goemetric product is the elegant description of the reflection of a vector x at a 
plane (Fig. 1). The plane has the normal vector a. Reflection x à x’ means to preserve the component of x 
parallel to the plane (perpendicular to a) and reverse the component of x perpendicular to the plane (parallel 
to a).  
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Fig. 1. Vector a perpendicular to plane of reflection x à x’. 
 

This is easily done with the following geometric product 
x' = - a x a-1 ,   a-1 = a/a2 .  

Two reflections at planes with dihedral angle θa,b are well known to produce a rotation (Fig. 2) by twice the 
angle θa,b : 
 

x ,x ' 2 a ,b  
We therefore get the rotation formula 
 

x ' ' ba x a 1b 1 ba x ba 1 R x R ,  
 

where the rotor R simply denotes the geometric product ba and R~ its reverse.  
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Fig. 2. Rotation by twice the angle between a and b. 

 
Such rotations in the STA will not only comprise elements of SO(3). They will include Lorentz 
transformations. For example a boost will simply be a rotation in a spacetime plane.  
 
2.3 Geometric Algebra of Spacetime (STA) 

The above definition of geometric algebra applies in fact to any space Rn,m, where n,m indicates the signature 
of positive and negative square vectors in a basis of Rn,m . Now let us turn our attention to the geometric 
algebra of flat spacetime (STA). The STA comprises 16 basis elements 

l Real scalar multiples of 1, 
l An orthonormal frame of the 4D Minkowski vector space {γ0, γ1, γ2, γ3 }with metric ηµν 

diag 1, 1, 1, 1 . 
l The unit oriented (pseudo-scalar) 4-volume (also used as duality operator) 

I 0 1 2 3 , I 2 1  
l six bivectors (three and three related by duality, i.e. multiplication with I) 

i i 0 , i
2 1 ,, I i , I i

2 1,i 1,2,3  
l and four trivectors (dual to the four vectors) 

I  
 
3. Special Relativity in STA  
 
3.1 Even STA Subalgebra 
 
Let x(λ) be a spacetime trajectory and its tangent vector  

x '
x

 
The trajectory and its tangent vector are timelike if    

x’2 > 0. 
This permits to define the proper time τ and (unit vector) four velocity v 

v x x , v 2 1  
associated with the instantaneous rest frame. The trajectory and its tangent vector are called null (photons!) if 

x’2 = 0 
A relative vector (actually a spacetime bivector) is defined by the outer product 

x v x , 
which is the grade 2 part of the full geometric product  

xv x v x v t x .  
The invariant distance therefore has the built-in form 

x2 xv v x t2 x 2
 

The even STA subalgebra is isomorphic to the GA of 3D Euclidean space and has the 8-dimensional basis 
(i=1,2,3) 

1 , i , I i , I  
 
3.2 Velocity, Momentum and Wave Vectors 
 



In rest space of v the proper velocity u of a particle can be measured relative to v in the form 

uvv u v u v v 1 u v , u v , u
u v

 
The relative momentum is defined by 

p : pv p v p v E p , 
with the invariant m of 

m2 p2 E 2 p 2
 

In the null case a photon wave vector can be measured relative to v in the form 
kv k v k v k ,0 k2 2 k 2

 
 

3.3 Lorentz Transformations 
 
Let us assume for simplicity that two frames are related by the frame vector relations e’2 = e2 , e’3 = e3 , 
with scalar velocity 

e'0 e0 ch , th ,   
which allows to derive 

e'0 e0 e1 , e '1 e1 e0 . 
Putting this in rotor form we obtain 

e'0 ch e0 sh e1 e0 e0 ch sh e1e0 e0

exp e1e0 e0 exp e1 e0 2 e0exp e1 e0 2 Re0 R  
 
and in general we get Lorentz transformations in rotor form as 
 

e' R e R , R exp e1 e0 2 . 
 

3.4 Addition of Velocities and Redshift 
 
Two observers with velocities 

v 1 e 1 e1 e0 e0 , v 2 e 2 e1 e0 e0  
have the relative velocity 

v 1 v 2

v 1 v 2

exp 1 2 e1 e0 2

exp 1 2 e1e0 0

sh 1 2

ch 1 2

e1 e0

th 1 2 e1 e0  
The frequency redshift of a photon emitted from particle 1 towards particle 2 can then be calculated from the 
velocity vector of particle 1 in the rest system of particle 2, the photon null vector in the rest system of 
particle 2, and the velocity of particle 2 itself 
 

v 1 ch e0 sh e1, k 2 e0 e1 , v 2 e0 . 
The redshift result is simply 

1 z 1

2

v 1 k
v 2 k

2 ch sh

2

e
1 th
1 th

1 2

 
 

4. Spacetime Dynamics -- Spacetime Rotors 
 
4.1 Invariant Decomposition 
 
Every restricted Lorentz transformation (B bivector) 

a Ra R , R R 1, R exp B 2  
has the following invariant decomposition into a boost and a SO(3) spatial rotation factor 
 

R exp B 2 exp I B 2  



with 
B2 exp I , B 1 2 exp I 2 B , B 2 1,

B I B I B B , B 1 2 exp I 2 B B I B. 
 

The timelike bivector ˆB has two invariant null vectors (seen as fixed points on the past celestial sphere) 
 

B 2 1, 2 B n n , n2 0, 
Rn R exp n  

 
4.2 Decomposition into Pure Boost and Relative Rotation 
 
A pure boost L from velocity γ0 to velocity v = L γ0 L~, is given by  

 

L
1 v 0

2 1 v 0
1 2 exp

2
v 0

v 0

, ch v 0

 
 
A general Lorentz transformation R can then be obtained with an additional γ0 invariant rotation 
 

U exp I b 2 , U 0 0U. 
 

Together the pure boost L and the γ0 invariant rotation U provide a second frame dependent (!) 
decomposition of the general Lorentz rotor R 
 

 R = LU .  
 
4.3 Spacetime Rotor Equations 
 
We are now about to rewrite spacetime dynamics by universally encapsulating it in the form of rotors. This 
will both apply to classical and quantum physics and open up a new geometric understanding of quantum 
wave functions, expounded in a later section. With the proper time τ we have for the four velocity of a 
particle 

v x R 0 R , v 2 1  
 
From this we compute the proper acceleration bivector (projected into the instantaneous rest frame) 
 

v v v v 2 R R v v  
 
In the case of Fermi transport (pure boosts from instant to instant, keeping the instantaneous spatial rest 
frame as constant as possible, e.g. for inertial gyroscopes) we have 

R R
1
2

v v
 

It is useful to define the socalled Fermi derivative 
D a
D

a a v v
 

which vanishes for Fermi transport, preserving a2 and a・ v. We especially have for Fermi transport with  

a v 0,
D a
D

a v v .
 

 
4.4 Lorentz Force Law 
 
With the SRT electromagnetic Faraday field bivector defined as 

F E I B  



the Lorentz force law becomes (q = charge of particle with mass m) 
 

mv q F v . 
 

This immediately leads to the acceleration bivector 

v v q
m

F v v q
m

E v .
 

The expression on the right hand side of the second equality is in terms of the Electric field in the 
instantaneous v frame. Now we can express the dynamics in the computationally robust rotor form 

R
q

2m
F R , x v Rv 0 R.

 
In the special case of a constant field we get with the invariant decomposition of section 4.1 for the Faraday 
bivector  

F F I F  
 

The particle trajectory composed of linear acceleration and periodic rotation terms is then 
 

x x0

exp q F m 1
q m

F v 0

exp q I F m 1
q m

I F v 0
 

 
 
4.5 Gyromagnetic Moment 
 
The precession of a spin vector s interacting with a magnetic field yields the STA form of the Bargmann-
Michel-Telegdi equation 

s s 0, s
q
m

F s g 2
q

2m
F s v v

 
 

For g= 2 (like for the Lorentz force) this reduces to 
                         

s
q
m

F s
 

For s・ v = 0 therefore both trajectory   
v 2 R R v , 

and spin precession follow from the robust rotor dynamics expression of section 4.4.  
s 2 R R s. 

 
 

4.6 Thomas Precession 
 
Let us consider a particle circling with radius a, and angular frequency ω 

x t a cos t 1 sin t 2  
Its velocity can be expressed in rotor factor form as 

v R R 0 R R , th a , ch t ,
R exp t I 3 2 , R exp 2 2  

The total rotor (in terms of three rotor factors) is then  
R R R , 0 0  

Assuming Fermi transport yields for the third rotor factor 
exp ch t I 3 2  

The precession angle θ(T) of the Fermi transported e1 after one complete orbit ( t = 0 ... T = 2π/ω ) will 
therefore be 
 



e1 T e1 0 cos 2 ch 1  
T 2 ch 1  

 
 
5. Maxwell’s Electromagnetism  
 
Let us now turn our attention to Maxwell’s four partial differential equations for electromagnetic fields [3]. 
The description of the relativistic motion of light by these equations was instrumental in shaping special 
relativity. 
 

  
 
Fig. 3. J.C. Maxwell wrote Psalm 111:2 in golden letters at the front gate of his Cambridge (UK) Cavendish 

Laboratory: 
Great are the works of the Lord; They are studied by all who delight in them.  

 
5.1 The Single Maxwell Equation in STA 
 
The spacetime (Dirac) vector derivative can be expressed in terms of familiar partial derivatives as 

,
x

,
 

0 t i i t  
This surprisingly allows a complete unification of all four Maxwell equations into the unique single 
multivector Maxwell equation 

F J   
 

with electromagnetic Faraday field bivector F and current vector J given by 
 

F E I B A
J J 0.  

 
Grade selection neatly separates the vector and trivector parts (equivalent differential form expressions in 
brackets) into 

F J ,  F J  
F A 0 ,   F 0  

The totally natural unification achieved in STA cannot be obtained by means of differential forms! Further 
imposing the Lorentz gauge condition we get the electromagnetic wave equation as 
 

A 0 F A , 2 A J  
 
5.2 Field Strength and Relative Motion 
 
The (observer γ0−dependent) electric and magnetic relative bivector components of the Faraday field 
bivector can easily be computed by 



E
1
2

F 0 F 0 , I B
1
2

F 0 F 0
 

The Faraday field bivector is subject to Lorentz transformations 
F R F R  

For a stationary (γ0−frame) charge the field bivector will be 
F E E x 1 E y 2  

Another observer moving in the γ1 direction is boosted with 
R exp 1 2  

resulting in 
R F R E x 1 E y exp 1 2

E 'x E x , E 'y ch E y ,B 'z sh E y  
The scalar (~ 1) and pseudoscalar (~ I ) Lorentz invariants are simply given by 

F 2 F 2
0 F 2

4 E 2 B2 I 2 E B  
                      Lagrange density  fully Lorentz invariant 

 
5.3 Fields of a Point Charge 
 
Charge q moving along trajectory x0(τ) radiates to an observer positioned at x along  

X x x0 , X 2 0, 
therefore we get surfaces of constant τ. That means the observer receives electromagnetic radiation from the 
world-point of intersection of his past light cone with x0(τ): 

x 1 x : X 2 0.  
The Lienard-Wiechert potential in the rest frame of the charge at the retarded position (described above) is 

A
q

4
v

X v
,
 

resulting in the Faraday field bivector with velocity and long range radiation terms 

F A
q

4
X v
X v 2

X v X

2 X v 3 .
 

The accelaration bivector in the Faraday bivector is  

v v v.  
For constant v we get with the above procedure 

x0 v  
and hence 

F q
4

x v
x v 3 .

 
F splits in the γ0-observer rest frame into 

E
q

4 d 3 x v t , B
q

4 d 3 I x v , x x t .
 

 
5.3.1 Point Charge -- Circlular Orbit 
 
Let us consider a point charge moving on a circle in the Iσ3 plane with speed 

v th  
x0 ch 0 a cos 1 sin 2  

v v v v . 
Numerically the past x light cone intersection with x0(τ) leads step by step to the point charge Faraday field 
bivector F(t) itself.   

x x0
2 0 t t v t , t F t  

Numerically the fieldlines of F in the x,y plane can then be explicitly pictured for varying speed parameter 



values (see e.g. the fieldline diagrams for α = 0.1, 0.4 and 1.0 in [8]).  
 
5.4 Stress-Energy Tensor 
 
The electromagnetic flux vector of the relativistic 4-momentum across a hypersurface perpendicular to a 
vector a in STA is 
                                T(a) = − FaF/2.  
This compact expression needs to be compared with the less elegant conventional tensor formula 

                               
T

1
4

F F F F
    

The nonlocal (covariant) field momentum (inegration over spacelike hypersurfaces) is given in STA by 

P
1

2
dAF n F

 
The flux vector T has the following properties: 

1. Symmetry                      a・ T(b) = T(a)・ b 

2. Positivity (for timelike velocities v)    v・ T(v) > 0 
3. Conserved current  

T 0, 0...3  
 
6. Quantum Theory 
 
6.1 Dirac, Geometry and STA 
 
The well-known complex four-by-four Dirac matrices represent spacetime basis vectors, their algebra is in 
fact isomorphic to the STA. This leads to a most natural complete STA expression of Dirac theory. In his 
1970 Boston lecture Dirac showed “... how physical ideas can be pictured immediately in geometrical 
terms ...” [10]. STA beautifully unfolds the geometry underlying Dirac’s algebra. 
 
6.2 Relativistic Dirac Spin 
 
Pauli and Dirac spinors can be mapped 1:1 to the even subalgebra of STA. The Pauli spinor matrices 
(isomorphic to Hamilton’s quaternions) can be mapped 1:1 to a real linear combination of scalars and 
relative bivectors 

a 0 i a3

a 2 i a 1 a 0 a k I k

 
 
The relativistic Dirac spinor matrices (Φ and Λ are Pauli spinors) can also be mapped 1:1 to even STA 
multivectors using 

3

 
Dirac matrix operators (distinguishing by a hat) 

0,... ,3 ,i , 5  
are then mapped to 

0 , i I 3 , 5 3 . 
 
6.3 Massless Dirac Equation 
 
The massless Dirac equation is indeed the simplest linear STA vector derivative equation 
 

0. 
From ψ we obtain the right and left-handed helicity eigenstates as 



1
2

1 3
1
2

1 3
 

0  
Taking the massless Dirac equation in two dimensions in fact simply constitutes a set of Cauchy-Riemann 
equations 

e1 x e2 y , u e1 e2v  

x u yv e1 y u xv e2 0  
 

This helps to understand how the STA vector derivative in the massless Dirac equation ∇ψ = 0 generalizes 
analytic functions to higher dimensions [11]. 
 
6.4 Massive Dirac Equation and Observables 
 
Geometrically the (even multivector) spinor ψ  acts like a Lorentz rotor, which rotates γ0 to the relativistic 4-
momentum p/m. Expressing the momentum by the Dirac vector derivative we naturally get for the massive 
Dirac equation 

p m 0 I 3 m 0  
The Dirac current vector 

J 0 , J 0  
geometrically is an instruction to rotate the vector γ0 into the direction of the current and dilate it with the 
real scalar probability density ρ to produce the (timelike and future-pointing) current vector J. 

exp I , 0,  
The duality rotation exp( Iβ ) is related to particle and antiparticle wavefunctions, with β the famous Yvon-
Takabayashi angle [12]. The full relation of the Lorentz rotor R to the Dirac spinor ψ  is explicitly given by 

0 R 1 2exp I 2 , R R 1  
J R 0 R  

J0=J・ γ0 ≧0 then gives the positive definite probability density for locating the electron. The spin vector (see 
also section 4.5) for the intrinsic spin of a particle is yet another observable obtained analogously with the 
Dirac spinor (rotor) 

s R 3 R 
 
6.5 Plane Wave States 
 
Plane waves are nothing but the positive and negative energy solutions of the Dirac equation 

p m J  
Using the decomposition of section 4.2 we can analyze plane waves as pure boosts L: mγ0 à p , combined 
with pure spatial (γ0  invariant) rotations U 

L p
E m p

2m E m 1 2
 

 
Therefore Lorentz rotors LU multiplied by phase factors of positive and negative energies constitute the 
plane waves  

x L p U exp I 3 p x  
x L p U I exp I 3 p x  

 
7. STA gauge theory of gravity 
 
In this final section I will give a very brief review of a fascinating STA gauge theory of gravity developped 
by the GARG group in Cambridge referring to the introductory form given to it recently by D. Hestenes [9].  

Again as in section 4.3 (proper time) parametrized rotors R(τ ) serve to express particle dynamics by a 
generalized rotational bivector velocity and to define comoving frames. A flat space model is employed, to 



identify the spacetime manifold with the Minkowski vector space. A spacetime map then describes the 
spaciotemporal partial ordering of physical events as points in the spacetime manifold. Fields on spacetime 
take values in the flat tangent space algebra.  

Two fundamental gauge principles, the displacement gauge principle (DGP) that equations of physics 
must be invariant under arbitrary smooth remappings of events on spacetime; and the rotation gauge 
principle (RGP) of covariance under (active) local Lorentz rotations correspond to globally homogeneous 
(DGP) and locally isotropic (RGP) spacetime.  

The DGP is realized with the help of a new physical (gravitational) field, an invertible gauge field (or 
tensor), equivalent to a tetrad field. This leads to position gauge invariant forms of (vector) derivative, 
velocity, and the line element with symmetric metric tensor; and completely decouples the remapping of 
events in spacetime from coordinate changes. The DGP is a true symmetry principle, because the 
displacement symmetry group leaves the flat spacetime background invariant. 

The RGP leads to a gauge covariant derivative (vector coderivative) including a bivector valued 
connexion tensor. Torsion free Riemannian geometry is assumed. The commutator of the coderivatives 
defines the curvature, which can be expressed as a covariant bivector-valued function of a bivector variable. 
Derivations in completely coordinate free form are given for curvature, curvature contractions, coderivative 
identities and Bianchi identities.  

This foundation permits to fully formulate Einstein's equation, electrodynamics with gravity, the 
derivation of equations of motion from Einstein's equation, particle motion, parallel transfer, gravitational 
precession and the real Dirac equation with (full electromagnetic and) gravitational interaction(s). Einstein's 
tensor is given a new unitary form. It becomes further possible in various gauges to establish very compact 
multivector solutions for the curvature tensors R of static black holes 

R(B) = − M (B+3 x0 B x0)/2r3 , 

with B a bivector variable, M the mass of the black hole, r = |x| = |x∧γ0|, and x0=erγ0 a relative unit radial 
bivector. The same is possible for rotating (Kerr) black holes and can e.g. be applied to elementary black 
hole physics and (gravitational) orbital precession. 

A position gauge invariant canonical energy-momentum split of Einstein's equations allows to identify 
total and gravitational field energy-momentum tensor densities. The total density is the divergence of a 
bivector valued superpotential (function of the vector connexion). We therefore have a coordinate 
independent energy-momentum tensor! There is a rotation gauge dependence, but superpotential and energy-
momentum tensor still preserve local gauge equivalence. 
 
8. Conclusion 
 
I very much hope you enjoyed this brief tour de force of vast realms of physics cast into the single unified 
framework of the STA algebra. This algebra can systematically replace differential forms and proves infact 
to be even more general [13]. If you want to inform youself further [14,15] may be a good idea to begin with. 
 
9. Acknowledgements 
 
First of all I want to thank God my creator and saviour: Soli Deo Gloria. (J.S. Bach). I want to round this 
contribution off with two quotations: one from a reference to Genesis in the New Testament and the second 
from Einstein himself. 
 

In the beginning was the Word and the Word was with God, and the Word was God. And he was 
with God in the beginning. Through him all things were made; without him nothing was made 
that has been made. In him was life, and that life was the light of man. The light shines in the 
darkness, but the darkness has not understood it. (John in the Bible) 
 
Raffiniert ist der Herrgott, aber boshaft ist er nicht. (A. Einstein) 
 

I further thank my family for total loving support and finally the great organizers of this memorable 
conference. 
 
10. References 
 



[1] See p. 44 of T. Needham, Visual Complex Analysis, OUP, 1997. The following homepage has many 
important papers of W.R. Hamilton online: http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/ 

[2] H. Grassmann, (F. Engel, editor) Die Ausdehnungslehre von 1844 und die Geometrische Analyse, vol. 1, 
part 1, Teubner, Leipzig, 1894. English translation by L. C. Kannenberg, A New Branch of Mathematics. 
The Ausdehnungslehre of 1844, and Others Works. Hermann Grassmann. Open Court, Ilinois, 1995. 

[3] J.C. Maxwell, A Treatise on Electricity and Magnetism. Clarendon Press, Oxford. 1873. 
[4] W.K. Clifford, Applications of Grassmann's Extensive Algebra, American Journal of Mathematics Pure 

and Applied 1, 350-358 (1878). Online: http://sinai.mech.fukui-u.ac.jp/gcj/wkconline.html 
[5] J.S.R. Chisholm, M. Chisholm, Darwin, V. Woolf, and Curved Space: The Story of W. and L. Clifford, 

http://wwwmaths.anu.edu.au/events/AustMS2001/publect.html 
[6] D. Hestenes, Spacetime Algebra, Gordon and Breach, New York 1966. See also Hestenes’ homepage for 

many online papers: http://modelingnts.la.asu.edu/GC_R&D.html 
[7] C. Doran and A. Lasenby, Geometric Algebra for Physicists, CUP, 2003. See also many GARG online 

papers at http://www.mrao.cam.ac.uk/~clifford/ 
[8] Physical Applications of Geometric Algebra Lecture Course Material 

http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/ and  
[9] D. Hestenes, Gauge Theory Gravity with Geometric Calculus, Found. of Physics, Vol. 35, No. 6, 2005. 
[10] P.A.M. Dirac, Talk: Projective Geometry, Origin of Quantum Equations, (Audio recording made by 

John B. Hart), Boston University, October 30, 1972. PDF transcript: 
http://www.aias.us/Comments/Paul Dirac Talk - Projective Geometry (2).pdf 

[11] F.Brackx, R. Delanghe, F.Sommen, Clifford Analysis, Pitman, 1982. 
[12] G. Casanova, L`algebra de Clifford et ses applications, Adv. in App. Cliff. Alg., 12, # S1 (2002). 
[13] R. Delanghe, On primitives of monogenic functions, preprint submitted to Complex Variables. 
[14] GA-Net Updates ( http://sinai.mech.fukui-u.ac.jp/GAblog/ ), weblog for everyone interested in Clifford 

Algebra and Geometric algebra. GA-Net itself is a monthly electronic newsletter for the same interest 
group ( http://sinai.mech.fukui-u.ac.jp/GA-Net/index.html ). 

[15] E. Hitzer, Geometric Calculus International website: http://sinai.mech.fukui-u.ac.jp/gcj/gc_int.html 
[16] R. Ablamowicz, G. Sobczyk (eds.), Lect. On Cliff. (Geom.) Algebras and Applications, Birkhaeuser, 

Basel, 2004. R. Ablamowicz (ed.), Cliff. Algebras – Applications to Math., Phys., and Engin., 
Birkhaeuser, Basel, 2004. 


