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Abstract. We develop a formalism for the Schrödinger equation in an eight 
dimensional complex Minkowski space and discuss its relation to the Dirac equation, 
properties of nonlocality, remote connectedness, Young’s double slit experiment, Bell’s 
Theorem, the EPR paradox and anticipatory parameters of spacetime; and also identify 
an imaginary temporal component as a small nonlinear term and find soliton or solitary 
wave solutions. These coherent solutions can carry information over long distances, are 
consistent with Lorentz invariance and appear to provide a fundamental methodology 
for describing the issue of quantum measurement and a new context for the basis of 
quantum theory. In the Copenhagen view models of reality are not desirable. However 
our new approach may enable the redefinition of concepts of reality from a new 
nonlocal anticipatory quantum theory. Certainly the most desirable consequence of 
scientific discovery is the ability to redefine our concepts of reality. 
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1. Remote Connectedness and Coherent Collective Phenomena 
 
 The interpretation of the extremely successful quantum theory, beyond the 
Copenhagen Theory, carries within it the vital need for the interpretation of what it 
means to make a measurement, primarily in the microdomain. The rapid and major 
development of the structure, content and interpretation of quantum theory in the 1920s 
and 1930s, as exemplified by the Heisenberg Uncertainty Principle and Schrödinger Cat 
Paradox and EPR Paradox [1], led to conceptual paradoxes beyond the practical 
application of quantum theory. The Schrödinger Cat Paradox arises over the issue of the 
collapse of the wave function. For two equally probable states arising from a 
microscopic process, only observation can determine which state exists. Heisenberg and 
Bohr demonstrated that the act of observation necessarily leaves the system in a new 
state through what Wheeler terms “participation” [2]. 
 The Copenhagen interpretation of quantum mechanics (that is that quantum theory 
can only predict the probability of the outcome of a specific experiment) was an attempt 
to dismiss the observer’s participation, but by this dismissal, we can no longer build 
models of reality. 
 The test of the universality of quantum theory’s experimental validity demands that 
nonlocality is a fundamental property of the quantum domain. The issue of nonlocality 
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as a fundamental property of space-time has been thoroughly proven by experimental 
verification. If quantum theory is universally valid, nonlocality is necessarily true [3] 
Bohm termed the nonlocal correlations. 
 Einstein’s dissatisfaction with the lack of determinism of quantum theory, and its 
probabilistic nature, led him to write the Einstein, Podolsky, and Rosen, EPR, paper. He 
had hoped to find a flaw in the quantum theory that would allow a way around the 
Heisenberg Uncertainty Principle and the probabilistic nature of the quantum theory [1] 
He was not the only physicist to be discontented with the, “spooky action of a distance.” 
Bell reformulated the EPR Paradox into a rigorous that could be experimentally tested. 
In more recent years, the formation of the EPR Paradox terms of Bell’s theorem [4], and 
its extensive tests which demonstrate that quantum theory holds in all known quantum 
experiments which necessarily demands the properties of nonlocality on the space-time 
manifold. 
 What are some of the possible implications from the quantum description, if we 
choose to pursue the development of models of reality and perhaps relax the pure 
objectivity constraint in physical theory? This issue is well exemplified by the Bell’s 
theorem formulation of the Einstein, Podolsky, Rosen Paradox [1]. An indication that 
non-locality is a principle in Nature is contained in Bell’s theorem, which asserts that no 
deterministic local “hidden variable” theories can give all the predictions of quantum 
theory [5]. However, most physicists believe that Nature is non-deterministic and that 
there are no hidden variables. The prevailing view is that Bell’s theorem merely 
confirms these ideas, rather than that it is an indication of a fundamental statement of 
nonlocality. However, in recent years this view has changed. 
 Stapp demonstrates that determinism and hidden variables occupy no essential role 
in the proof of Bell’s theorem, which Stapp has reformulated [6]. Stapp asserts that no 
theory which predicts the outcome of individual observations which conform to the 
predictions of quantum theory can be local. A less restrictive interpretation of Bell’s 
theorem is that either locality or realism fail [7]. Realism is a philosophical view in 
which external reality is assumed to exist and have definite properties fundamentally 
independent of an observer [7,8] Stapp presents reasonable and comprehensive models 
of reality in which nonlocality, as implied by Bell’s theorem, is inconsistent with 
“objective reality,” in which observable attributes can become definite, independent of 
the observer, the so-called “collapse of the wave function”. 
 In Young’s double slit experiment, photons from a source can go through one of 
two slits or openings of a slit interference arrangement. Through which slit did the 
photon go that blackens a photographic plate at the other end of the apparatus. The 
answer is not yet defined because of the Heisenberg Uncertainty Principle. One can 
observe interference fringes when both slits are open, but at the cost of not knowing 
through which slit the photon went. Or, one can know through which slit the photon 
went when one slit is closed, but at the cost of not having any interference fringes. 
Again, the choice appears to be that of the observer [9]. This experiment also brings the 
role of the observer into consideration and may also involve nonlocality and 
anticipation [10]. Certainly, one of the most desirable consequences of scientific 
discovery is the ability to discover and refine our concepts of reality. 
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2. Complex Eight Space and the Formation of Nonlocality 
 
 We have introduced a complex multi-dimensional geometry of the four real 
dimensions of space, XRe of xRe, yRe, zRe, and tRe and four imaginary dimensions XIm of 
ixIm, iyIm, izIm and itIm, such that we can describe nonlocal macroscopic connections of 
events that do not violate causality [11]. There are several motivations for introducing 
such a model; one of which relates to a possible macroscopic formulation of a Bell’s 
theorem-like nonlocal correlation function that may have macroscopic implications, 
leading to a new interpretation of the Bell’s theorem experimental results and to a more 
fundamental interpretation of the quantum measurement issue. The complex Minkowski 
Space M4 is constructed so as to maintain causality and analytic continuation in the 
complex manifold [11-13]. The four real dimensional space can be considered a slice 
though the hyperdimensional complex eight space 13]. 
 Events that appear remote in four space, M2, are contiguous in the complex eight 
space, M4. We have demonstrated a fundamental relationship between the complex 
eight space and the topology of the Penrose twister algebra [8,14,15]. In this model, 
spacetime events can become contiguous in the complex eight space, demonstrating that 
the remoteness of the observer and observed can become contiguous in the complex 
eight space in which causality conditions are preserved and the acquisition of apparent 
remote information is allowed. 
 We have solved the Schrödinger equation in the complex eight dimensional space 
and, with the inclusion of a relatively small, but significant, non-linear term, g2 (τ), we 
find soliton and solitary wave solutions. The non-linear term, which depends on the 
imaginary time component, overcomes dispersion giving the non-dispersive soliton 
waves. The coherence over remote space and time of these wave solutions relates to 
macroscopic-related phenomena as it does for Bell’s theorem, Young’s double-slit 
experiment and other nonlocal anticipatory phenomena. The non-linear form of the 
Schrödinger equation may be related formally to the non-linear gravitational 
phenomena [15] and also has implications for the quantum measurement problem [16]. 
Resolution of the observer-participant problem may be at hand as demonstrated by a 
new interpretation of the Schrödinger equation. In this formation, remote spacetime 
events are contiguous so that the observer has direct acquisition to remote observable 
information, in such a manner as to preserve causality. 
 
3. Space-Like Remote Connectedness, Bell’s Theorem and its 
Experimental Test 
 
 A most significant theorem about the nature of physical systems is Bell’s 
formulation [4] of the Einstein, Podolsky and Rosen (EPR) “completeness” formulation 
of quantum mechanics [1]. The EPR paper was written in response to N. Bohr’s 
proposal that the non-commuting operators (Heisenberg uncertainty principle) comprise 
a complete theory. (Copenhagen quantum mechanics view). Einstein, Podolsky and 
Rosen define a complete theory as one in which every element of the theory 
corresponds to an element of “reality”. Bohm introduced additional quantum non-
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observable variables or “hidden variables,” as we presented in the last section, in order 
to make the EPR quantum interpretation consistent with causality and locality [17]. In 
1964, Bell “formulated” the EPR statement and showed mathematically that locality is 
incompatible with the statistical predictions of quantum mechanics. The locality or 
separability assumption states that the result of a measurement on one system is 
unaffected by operations on a distant system with which it may have previously 
interacted or had become entangled. 
 Bell discusses a specific experiment, Stern-Gerlach measurements of two spin one-
half particles in the singlet spin state moving freely in opposite directions. The spins are 
called s1 and s2; we make our component spin measurements remote from each other at 
position P1 and P2, such that the Stern-Gerlach magnet at P1 does not affect one at P2 
and vice versa. Since we can predict, in advance, the result of measuring any chosen 
component of s2 at P2 by previously measuring the same component of s1 and P1, this 
implies that the result of the second measurement must actually be predetermined by the 
result of the first [remote from P2] measurement. In Bell’s proof, he introduces a more 
complete specification of the parameters of a system by introducing parameters which 
in essence are hidden variables. Bell’s proof is most eloquent and clear. He calculates 
the conditions on the correlation function for measurements at P1 and P2, as an 
inequality. 
 Bell’s precise statement made it possible for Clauser and Horne to test the predicted 
statistical distribution of quantum processes and demonstrate a laboratory instance of 
quantum connectedness and nonlocality [18,19]. Indeed, in Clauser’s calcium two 
photon cascade system, two photodetectors remote from each other are each preceded 
by independent, randomly-oriented polarizers. The statistical predictions of quantum 
mechanics is borne out in the measurements made at the two photomultiplier tubes 
(PMT). In Bell’s words, “there must mechanism whereby the setting of one measuring 
device can influence the reading of another instrument, however remote.” Moreover, the 
signal involved must propagate instantaneously so that a theory could not be Lorentz 
invariant. Lorentz invariance, in the usual sense, implies v ≤ c. Feinberg discusses the 
relationship between Lorentz invariance and superluminal signals which he found not to 
be incompatible). It is not completely clear that superluminal signals must be invoked to 
drive Bell’s theorem [20] but this author has demonstrated that indeed Bell’s theorem 
demands v ≤ c [21]. 
 The conclusion from Bell’s theorem, then, is that any hidden variable theory that 
reproduces all statistical predictions of quantum mechanics must be nonlocal (implying 
remote connectedness). Of course, thus far, all these formulations involve 
microproperties only, but some recent formulations seem to imply possible macroscopic 
consequences of Bell’s theorem as well. It is believed that the key lies in the 
formulation of the correlation function which represents the interconnectedness of 
previously correlated events. Stapp has demonstrated that hidden variable theory is not 
necessary to the formalism of Bell’s theory [22]. Stapp has recently expanded the 
pragmatic view of Bell’s theorem and discusses the role of the macroscopic detection 
apparatus as well as the possible role of superluminal signals. He explores both cases 
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for superluminal propagation or subluminal connection issuing from the points in 
common to the backward light cones coming from the two regions. 
 We can write a general correlation function, for example, for an angle   between 
polarization vectors in two polarizers as C ( ) = ½ - ½ cos 2  = cos2  for J. Clauser’s 
experiment, or for odd integers we can write nC( ) - C(n ) - (n - 1) ≤ 0 , which is 
Bell’s inequality – specifically for n = 3; 3C( ) - C(3 ) - 2 ≤ 0 . We can write in 
general C( ) = ½ + g cos 2  where g is determined by the particular experiment under 
consideration. The magnitude correlation function constant, g, relates to the type of 
nonlocal correlation experiment. For g = ½, we have the Bell’s theorem photon-photon 
correlation. 
 An exciting and extremely important test of Bell’s inequality was designed and 
implemented by Clauser et al. in the early 1970s at the University of California, 
Berkeley, which author (EAR) had the privilege to observe [7,18], as well as the work 
of Aspect, et. al. at the University of Orsay, France [23]. These extremely well designed 
and implemented experiments unique remote causal connections and nonlocality on the 
spacetime manifold. Photon correlations have been observed over meter distances in the 
Aspect experiment. More recently, Gisin et al. has tested Bell’s inequality over 
kilometer distances [24,25]. Rauscher and Targ apply the complex eight space and its 
description of nonlocality, such as exemplified in the Bell’s theorem tests, to the 
nonlocal aspects of consciousness [26,27]. Precognition and retrocognition comprise an 
anticipatory system. Clauser expressed his impression of these nonlocality experiments 
to the above authors. He stated that quantum experiments have been carried out with 
photons, electrons, atoms, and even 60-carbon-atom Bucky balls. He said that, “it may 
be impossible to keep anything in a box anymore.” Bell emphasizes, “no theory of 
reality compatible with quantum theory can require spatially separate events to be 
independent.” That is to say, the measurement of the polarization of one photon 
determines the polarization of the other photon at their respective measurement sites. 
Stapp also stated to one of us (EAR) that these quantum connections could be the, 
“most profound discovery in all of science” [26]. 
 Bohm has conducted research on the concept of the undivided nonlocal whole, and 
Bohm and Hiley [3], having extensive discussions with one of us (EAR). Also 
Wheeler’s fundamental explanations on the concept of nonlocal interactions and the 
foundations of the quantum theory in publications and discussion with author (EAR) are 
fundamental to anticipatory systems [2]. Wheeler’s design of his delayed choice 
experiment demonstrates that, according to quantum theory, the choice to measure one 
or another pair of complimentary variables at a given time can apparently affect the 
physical state of events for considerable periods of time before such a decision is made. 
Such complimentary variables are typically momentum and distance, or in Wheeler’s 
experiment refer to the dual wave and particle nature of light, as observed in a two slit 
interference apparatus. 
 Wigner attempted to formulate a nonlinear quantum theory and stated support of the 
complex Minkowski eight space which has macroscopic nonlocal consequences [28]. 
The fundamental issue he addressed is when are where does the measurement 
observation occur for a stochastic causal system. Earlier, von Neumann had suggested a 



6 
 

sequence of observations, or von Neumann chain. Wigner also addresses the issue of 
multiple observers of a quantum generated event [28]. 
 
4. Complex Eight Space and Nonlocal Anticipatory Systems 
 
 Within the context of a fundamental observation and theoretical formalism of 
nonlocality and anticipation, such a theory must be consistent with the main body of the 
principles of physics. The major universal principles are used to determine the structure 
and nature of physical laws and act as constraints on physical phenomena. These are 
Poincairé invariance and its corollary, Lorentz invariance (which expresses the space-
time independence of scientific laws in different frames of reference), analyticity 
(which is a general statement of causality conditions in the complex space), and 
unitarity (which can be related to the conservation of physical quantities such as energy 
and momentum). 
 These principles apply to microscopic as well as macroscopic phenomena. The 
quantum description of elementary particles has led to the formulation of the analyticity 
principle in the complex momentum plane [29]. Complex geometries occupy a vital role 
in many areas of physics and engineering. Analyticity relates to the manner in which 
events are correlated with each other in the space-time metric (that is, causality). When 
we apply this critical principle to the complex eight-dimensional space we can reconcile 
nonlocality and anticipatory systems with physics, without violating causality. It has 
been mathematically demonstrated that the equations of Newton, Maxwell, Einstein, 
and Schrödinger are consistent with the eight-dimensional complex space described 
here [12-14,20,30-33]. In addition, nondispersive solitary wave solutions are obtained 
for the complex eight space Schrödinger equation [21]. 
 The least number of dimensions that has the property of nonlocality and that is 
consistent with Poincairé invariance or Lorentz invariance is eight dimensions. In this 
space, each physical spatial distance has an imaginary temporal counterpart, such that 
there is a zero spatial separation in the higher dimensional space. Likewise for every 
real physically temporal separation, there is a counterpart imaginary spatial separation 
that subtracts to zero on the metric, allowing access to future information and bringing 
it into the present, which acts as an anticipatory system. 
 We have also demonstrated the properties of nonlocality with the formalism of 
Maxwell’s equations in complex eight space [29-31]. In the next section, we present a 
brief description of the complex Minkowski eight space and its properties and 
implications. Then we present in section 4 the solution to the Schrödinger equation in 
complex eight space and nonlinear recursive solutions which are consistent with and 
explanatory of Bell’s nonlocality and the general principles of nonlocality and 
anticipatory phenomena in the quantum domain. 
 Both special and general relativistic forms of the complex eight space have been 
formulated and examined in applications [11,13,15]. We present a brief description of 
the formalism which we utilize to solve the Schrödinger equation. We express the 
solution of the Schrödinger equation in complex eight space. In the usual four 
dimensional Minkowski space, where Einstein considered time as the fourth dimension 
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of three space, this formulated as a four dimensional light cone diagram displayed in 
two dimensions, in which the ordinate is the time coordinate and the abscissa is the 
space coordinate, representing the three dimensions of space as X = x,y,z. the sides of 
the forward and backward light cone form signal connections at the velocity of light, c, 
and the apex of the cone represents “now” space-time. Inside the forward, future time, 
and backward, past time, light cone event connections are represented by signaling for v 
< c called time-like signaling. The space-like signaling outside of the light cone 
represents greater than light speed, or space-like signaling, or  v > c. 
 Bell’s nonlocality test implies space-time signaling and hence, even though 
experimentally well-verified, some physicists find nonlocality unsatisfactory. However, 
as we know, the truth is in what Nature shows us, not in our particular biased beliefs. 
The complex eight space formalism not only yields a mathematical description of 
nonlocality, but the complexified Schrödinger formalism gives a detailed picture of the 
quantum nonlocality that is consistent with the statistical nature of the quantum theory, 
but is also consistent with the formalism of relativity. Apparent superluminal signaling 
can occur for the connection of correlated past time events that remain correlated for 
present measurement and are related by luminal velocity of light signaling in the 
complex eight space. Also, this formalism allows anticipatory measurements such as in 
the Aspect, Gisin experiments and Wheeler’s delayed choice experimental proposal.  
 The conditions for causality in the usual four space, distance ds2 is invariant and 
given as ds2 = gabdxadxb where the indices a and b run 1 to 4. We use the metrical 
signature (+,+,+,-) for the three spatial and one temporal component in the metric gab. 

This metric is expressed as a sixteen element four by four matrix which represents a 
measure of the form and shape of space. This is the metric defined on the light cone, 
connecting time-like events. A second four imaginary dimensional space light cone can 
be constructed, which intersects with the usual four dimensional Minkowski space, can 
be constructed. These two light cones coincide in there “now” space-time realities. The 
complexified eight space metric is denoted as M4 because it represents the 
complexification of four space-time dimensions. The complex space is expressed in 
terms of the complex eight space variable Z  , where Z X iX   Re Im , and Z *  is the 

complex conjugate of Z  so that Z X iX   Re Im . We now form the complex eight 

space differential line element 
 *2 dZdZdS   where the indices run 1 to 8 

and   is the complex metric of eight space. The generalized complex metric in the 

previous equation is analogous to the usual Einsteinian four-space metric. In our 
formalism, we proceed by extending the usual four dimensional Minkowski space into a 
four complex dimensional space-time. This new manifold (or space-time structure) is 
analytically expressed in the complexified eight space. 
 As stated before we represent X Re  by xRe, yRe, zRe and tRe i.e. the dimensions of our 
usual four space. Likewise, XIm represent the four additional imaginary dimensions of 

xIm, yIm, zIm, and tIm. Hence, we represent the dimensions of our complex space as Z   
or xRe, yRe, zRe, tRe, xIm, yIm, zIm, and tIm. These are all real quantities. It is the i before the 
xIm, etc. that complexifies the space. We write the expression showing the separation of 
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the real and imaginary parts of the differential form of the metric: 

   dZ dZ dX dX   *
Re Im 

2 2
. We can write in general for real and imaginary space 

and time components in the special relativistic formalism. 
         Im

2
Re

22
Im

2
Re

2
Im

2
Re

2
Im

2
Re

22 dtdtcdzdzdydydxdxds     (1) 
We now use lower case x and t for the three dimensions of space and on of time. We 
represent the three real spatial components dxRe, dyRe, dzRe as dxRe and the three 
imaginary spatial components dxIm, dyIm, dzIm as dxIm and similarly for the real time 
component dtRe = dt, the ordinary time and imaginary time component dtIm remains dtIm. 
We then introduce complex space -time coordinates as a space-like part xIm and time-
like part tIm as imaginary parts of x and t. Now we have the invariant line elements as,  

         s x c t x t2 2 2 2 2 2                       (2) 

again where we take the units c2 = c = 1 which is made for convenience 
           x = xRe + ixIm                (3a) 
and          
           t = tRe + itIm                   (3b) 
as our complex dimensional components so that [11,27] 

               x x x x2 2 2 2
Re Im               (4a) 

and           t t t t2 2 2 2  Re Im .              (4b) 
 Recalling that the square of a complex number is given as, 

           | x´ |2 = x´ x´* = (xRe + ixIm ) (xRe - ixIm )                 (5) 

where the modulus of a complex number squared is   x x x2 2 2
Re Im  so that xRe and 

xIm are real numbers. This is a very important point, as we can only measure events 
described in terms of the mathematics of real numbers. Therefore, we have the eight-
space line element where spatial and temporal distances are taken from the origin.  
             s x c t x c t2 2 2 2 2 2 2   Re Re Im Im             (6a) 

             s2   x t x tRe Re Im Im
2 2 2 2                   (6b) 

Causality is defined by remaining on the right cone, in real space-time as, 
          s x c t x t2 2 2 2 2 2   Re Re Re Re            (7) 
using the units of c = 1. Then the generalized causality in complex space – time 
is defined by 
           s x t x t2 2 2 2 2   Re Re Im Im                (8) 
where the coordinates in complex eight space can be represented by x t x tRe Re Im Im, , ,  on 
two generalized light cones eight dimensional space [11,12,31].  
We calculate the interval separation between two events or occurrences, Z1 and Z2 with 
real separation x x xRe Re Re, , 2 1  and imaginary separation x x xIm Im, Im, 2 1 . Then 

the distance along the line element is   s x x t t2 2 2 2 2   Re Im Re Im  and it must be true 

that the line interval is a real separation. The spatial and temporal distances that are 
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generalized and are not taken only from the origin, but from any two points in space and 
time. Then,  

          s x x x x t t t t2
2 1

2

2 1

2

2 1

2

2 2

2

       Re, Re, Im, Im, Re, Re, Im, Im,      (9a) 

Or we can write equation 9a as:      

            21Im,2Im,
2

1.Re2Re,
2

1Im,2Im,
2

1Re,2Re,
2 ttttxxxxs           (9b) 

 In equation (9b), the upper left diagonal term  x xRe, Re,2 1

2

  is be offset or 

“cancelled” by the lower right diagonal term   t tIm, Im,2 1

2

, and the lower left 

diagonal term  2

Re,1 Re,1t t   is off set by the upper right diagonal term  x xIm, Im,2 1

2

 . 

Because of the relative signs of the real and imaginary space and time components, and 
in order to achieve the causality connectedness condition between the two events, or 
s2 0 , we must “mix” space and time. That is, we use the imaginary time component 

to effect a zero space separation. We identify  x tRe, Re,,1 1  with a subject receiver 

remotely perceiving information from an even target  x tRe, Re,,2 1 . 

 The nonlocality of Bell’s theorem and its experimental test involves a real physical 
separation x x xRe Re, Re, 2 1   0 and can either involve a current time observation 

such that t t tRe Re, Re,  2 1 0  or a anticipatory time interval  tRe = tRe,2 – tRe,1 > 

0. The case where there is no anticipatory time element tRe  0 . The simplest causal 
connection then is one in which xIm  0 , and we have, 
         s2 = 0 = (xRe,2 ─ xRe,1 )

 2 ─ ( tIm,2 ─ tIm,1)
 2 .          (10) 

 These conditions are illustrated in figure 1. In figure 1a we represent a generalized 
point P(xRe,tRe,tIm), displaced from the origin which is denoted as P1. This point can 
be projected on each dimension xRe, tRe and tIm as points P2, P3, and P4 respectively. In 
Figure 1b, we denote the case where a real-time spatial separation exists between 
points, P1 and P2 on the xRe axis, so that xRe  0, and there is no anticipation, so that 
tRe = 0, and access to imaginary time tIm, nonlocality can occur between the P1 to P4 

interval, so that t Im  0 . Then, our metric gives us s2 0 , where nonlocality is the 
contiguity between P1 and P2 by its access to the path to P4. By using this complex 
path, the physical spatial separation between P1 and P2 becomes equal to zero, allowing 
direct nonlocal connectedness of distant spatial locations, observed as a fundamental 
nonlocality of remote connectedness on the spacetime manifold. 
 Figure 1c represents the case where anticipation occurs between P1 and an apparent 
future anticipatory accessed event, P3 on the tRe axis. In this case, no physical spatial 
separation between observer and event is represented in the figure. Often such 
separation on the xRe exists. In the case where xRe = 0, then access to anticipatory 
information, along tRe can be achieved by access to the imaginary temporal component, 
tIm. Hence, remote, nonlocal events in four space or the usual Minkowski space, appear 
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contiguous in the complex eight space and nonlocal temporal events in the four space 
appear as anticipatory in the complex eight space metric. Both nonlocality and 
anticipatory systems occur in experimental tests of Bell’s Theorem and perhaps in all 
quantum measurement processes. 

 
Figure 1. We represent the location of four points in the complex manifold. In figure 
1a, point P1 is the origin, and P is a generalized point which is spatially and temporally 
separated from P1. In figure 1b, the Points P1 and P2 are separated in space but 
synchronous in time. This could be a representation of real-time nonlocal spatial 
separation.. In figure 1c, points P1 and P3 are separated temporally and spatially 
contiguous. This represents an anticipatory temporal connection.   
  
5. Solitary Wave and Coherent Non-dispersive Solutions in Complex 
Geometries 
 
 The properties and some of the implications of complex Minkowski spaces hold 
fundamental significance. We have presented the formalism for complex geometries in 
the previous section and also for superluminal x direction boosts in these geometries 
and the possible implications for remote connectedness, and anticipatory systems [11]. 
Also the symmetry relations of the vector and scalar electromagnetic potential and other 
properties of Maxwell’s equations, the x-directional superluminal boost, have been 
formulated [18]. The relationship of this approach to the Schrödinger equation in this 
work is of interest. 
 In this section we determine solutions to the Schrödinger equation formulated in a 
complex Minkowski space and demonstrate the relationship of the solutions to inter-
connectedness and the nonlocality principle. The solutions are solitary or soliton waves 
which exhibit little or no dispersion over long distances. We present several 
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implications of this formalism, for the test of Bell’s Theorem, anticipatory processes 
and an explanation for some coherent, nonlinear, non-dispersive phenomena, such as 
nonlinear plasma phenomena [34,35].  
 We examine the relationship between our multi-dimensional remote connectedness 
geometry and possible coherent, non-dispersive solutions to the Schrödinger equation. 
These non-dissipative or non-dispersive solutions are termed soliton solutions, or 
solitary wave solutions, and are well known in macroscopic hydrodynamic phenomena. 
There has been some recent interest in the use of the soliton or instanton model to 
describe the gluon quark structure for “infinitely” bound quarks, in part, to explain the 
lack of experimentally observed free quarks. 
 The solution to linear wave equations are dispersive in space and time, that is, their 
amplitude diminishes and width at half maximum becomes larger as a function of time. 
The term soliton is commonly used to define a wave which retains its amplitude and 
“half width” over space and can interact and remain intact with other solitons. The term 
instanton, or evanescent wave, is used to describe a structure which experiences both 
spatial and temporal displacement. The term instanton seems to imply a short-lived 
structure but actually instantons can retain their spatial and temporal configuration 
indefinitely and interact with other instantons in a particle-like manner as do solitons. 
These unique solutions can explain the existence of long spatial and temporal 
phenomena such as Bell’s remote connectedness phenomenon, Young’s double slit 
experiment, plasma coherent collective states and other coherent phenomena. 
 Starting from the Schrödinger equation in complex spacetime, as seen previously 
[8,11], complex geometries have properties consistent with the above mentioned 
phenomena. We proceed from the time-dependent Schrödinger equation in a vacuum 
with no potential term, V . Which is considered later [21]. In real spacetime, we have 

             
2 1

2m i t

  





 .               (11) 

 
Monochromatic plane wave solutions for one dimension of space, or x-direction, such 
as 

             
( )i kx t

e
 




              (12a) 

or 

            
( )

*
i kx t

e
  




          (12b) 

which comprise the usual solutions. We can also write (12a) as 

          i kx t
e for   

 


          (13) 

and we can write (13) as 
          cos sinie i                (14a) 
and also 
         sinh cosie i i     .          (14b) 
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Equation (11) is the usual linear form of the Schrödinger equation in which the 
superposition principle holds and the quantum measurement issue arises.  
 We proceed to formulate the Schrödinger equation in complex spacetime. The form 
of complex derivative utilized here is given in [8,11]. Only one-dimensional forms of 
the derivative are considered in the del operator. We consider x-directional spatial 
dependence only for the real component of x as xRe 

           
2 2

2
Re2 2m m x

  



 .          (15) 

Using the imaginary components of space and time xIm and tIm, we have 

           
2 2
Im

2
Im2 2m m x

  



 .          (16) 

Note that the sign change occurs for the spatial second derivative for Imix x . The 

imaginary time derivative yields 

            
Im

1

*it i t

 


 
            (17) 

which is an imaginary term derivative. 
 The imaginary form of the Schrödinger equation becomes 

            2
Im

Im2m t

 
 




.              (18) 

Because the Schrödinger equation is second order in space and first order in time and no 
imaginary term occurs in Eq. (18), the harmonic solutions in Eqs. (13), (14a), and (15b) 
are not solutions to the imaginary components of the Schrödinger equation. Since the 
Dirac equation is first order in space and time, and the Klein-Gordon equation and 
classical wave equation are second order in space and time, quite a different picture 
emerges. 
 Starting from a real solution, which is a plane exponential growth function 

         
kx t

e for   
 


             (19) 

we then have from Eq. (18), 

          
2 2

2 2
Im Im

k k
or

x x

  
 

  
            (20) 

and 

             
Imt

 


 
.               (21) 

and Eq. (19) satisfies (18). Note that ( ) /kx t     does not satisfy Eq. (18) because 

of the minus sign which then occurs in Eq. (21). All quantities 2 2 2, ,k   are real as is 
xIm and tIm. 
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Figure 2.  We approximate the quantum domain as a linear variable dependent on a 
parameter. The full “space” of exact reality is nonlinear. 
  
 The form of the solution in Eq. (19) for   positive definite, for all quantities greater 
than zero, yields an undamped growth function, that is we find that solutions in an 
imaginary spacetime geometry yield growth equations. Equation (19) is of a linear 
form. We also have another solution in Eq. (25a), but Eq. (25b) is not a solution: 

          
kx t

e for       
 

       (22a) 

and 

          
kx t

e for       
 

       (22b) 

where in kx, x is xIm and standing wave solutions cannot occur. Before we examined the 
solution of the Schrödinger equation in complex spacetime for x’ = xRe + ixIm  and  t’ = 
tRe + it. Let us briefly discuss the introduction of a nonlinear term with a small coupling 
constant. 
 
A. The Nonlinear Schrödinger Equation with a Complex Temporal 
Perturbation 
 
We introduce a ‘potential’ like term which is coupled by a small coupling constant, 2g , 
and is associated with an attractive force. If the coupling term is small, then solutions 
can be determined in terms of a perturbation expansion. A 2g  > 0 implies an attractive 
force when it is regarded as a second quantized Fermi field. This field satisfies the Dirac 
equation and introduces an additional term in the Lagrangian. In reference [11] we 
detail this formalism, in which causality conditions in terms of analytic continuation in 
the energy plane gives motivation for identifying the nonlinear coupling term with the 
imaginary temporal coordinate, as t* = itIm. 
  By analogy to this form of the Dirac equation, we can write 

          
2

2Im ( ) 0
2

g
m

   
 


            (23) 
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for the time-dependent equation where    is the Hermitian conjugate of  . For the 
real time-dependent equation, we have 

          
2

2Im

Im

1
( )

2
g

m i t

    
 




.               (24) 

For the Schrödinger and Dirac equation, we can find solutions which we can identify in 
a field theory, in which each point is identifiable with a kinetic, potential and amplitude 
function. Linearity can be approximated for 2 ~ 0,g  for 2g  expressed in terms of Imit . 

In the following subsection we examine the complexification of the Schrödinger 
equation. 

 
 
Figure 3.  Plots of various solutions. 
 
B. The Schrödinger Equation in Complex Space and Time 

 
Returning to our definition of complex space and time, 

          Re Im Re Im' , 'x x ix t t it                (25) 

where xRe and tRe are the real parts of space and time and xIm and tIm are the imaginary 
parts of space and time and are themselves real quantities. In the most general case we 
have functional dependencies xIm (x,t) and tIm (x,t) where x and t are xRe and tRe. With 
the quantum superposition principle, we can combine real and imaginary parts. For the 
x-directional form of Eq. (11), we have 

            
2

1 1
2
Re Re

1
.

2m x i t

  


 


                   (26) 

For the imaginary part, we have from Eq. (18) 
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2

1 2
2
Im Im

.
2m x t

  


 


            (27) 

By linear superposition, we can combine the above equation, as 

       
2 2

2 2
Re Im Re Im

1

2m x x i t t
 

      
            


.             (28) 

Note that we make an assumption that the mass in Eq. (26) is the same as in Eq. (27). 
We discuss this assumption and tachyonic implications in [11]. We now form solutions 

Re Im Re Im( , , , )x x t t  in terms of linear combinations of 1 Re Re( , )x t  and  2 Im Im( , )x t . 

 Equation (27) is defined on a four-dimensional space Re Im Re Im( , , , )x x t t . In the first 

approximation, we will choose 2 2
Im/ 0x    so that we have 

         
2 2

2
Re Re Im

1

2m x i t t
 

   
     


.             (29) 

Motivation for this approximation can be found in our discussion of remote 
connectedness properties, diagrammed in Figs. 1c and 1b of the previous section. 
 Let us rewrite Eq. (26) as  

           
2 2

2
Re Im Re

1

2m x t i t
    
 

  


            (30) 

where   is a function of Re Re Im( , , )x t t . From examination of the forms of Eq. (24) and 

(29), we can identify the g2 term with the imaginary time derivative Im/ t  . This result 

is similar to the more comprehensive field theoretic argument for the Dirac equation. 
The associated metric space for Re Re Im( , , )x t t  defines a remote connectedness geometry. 

We then have 

              
2

2
2
Re Im

1

2
G

m x i t

  
 

 


                 (31) 

where 2 2 ( )G g    is identified with the Im/ t   term. We proceed from the 

assumption that Re Re Im( , , )x t t  are independent variables of each other. 

 We can define three cases for the right side of Eq. (31), that is, the real time-

dependent case, (a) zero, time dependent cases, (b) 
1

nE
i

 , and (c) 
1

i t




. In determining 

the coupling constant G2, we define solutions Re Re Im( , , )x t t  for the third case. We have, 

in general,  

           
2

2
2

1
( )G

x i t

  


  
 

  
.            (32) 

We define the quantity Re Re Imkx t t     . For case (a) above we have solutions 

           2
0 secA h a                     (33) 

where 
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2 2

2
Im( ) tanh

2

a k
G t a

m






              (34) 

where k is the wave number or kIm. The constant, a can be expressed in terms of   and 
m where m’ = im = m* = mIm which is the tachyonic mass, which we formulate in 
complex eight space. For case (c), we find a similar solution for   for 

          

2 2

2
Im 1

2

2( ) tanh
( )

a k
mG t a

 






.                (35) 

Solutions and the form of G2 (tIm) is more complicated for case (b). Note the analogy to 
the solutions for the Korteweg-deVries equation [21] for  

        2( , ) sec /u x t A h k for K x ct L             (36) 

where L is a characteristic length dimension of a soliton wave which is expressed in 

terms of the amplitude A and the hydrodynamic media depth h or 3 / 3L h A  [35]. 
 

 
 
Figure 4. Historical development of the quantum theory. 
 
 The form of 2

Im( )G t  is nonlinear and is compatible with the soliton solutions. The 

non-dispersive nature of the solutions may be associated with a complex space “signal” 
which defines the connection of remote parts of the multi-dimensional geometric space 
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[11]. Several types of solutions are displayed in Fig. (3). See Fig. 4 for the implications 
of the Quantum Theory and Bell’s theorem. 

 
C. Discussion and Application of Coherent State Solutions 
 
The soliton solution is a unique solution in that it is non-dispersive. All other solutions 
to the Schrödinger  equation are dispersive to various degrees. Each state solution has a 
particular amplitude at a specific point in space and instant in time. One can calculate 
the probability of this existence of a specific amplitude as a function of x and t. A 
unique feature of the soliton is that it retains its amplitude in space and time and 
therefore we have a reasonable certainty in our measure of  it for each space and time. 
 In practice, there are no completely non-dispersive waves but soliton solutions are 
defined in terms of coherent, non-dispersive states that retain their identity and 
amplitude over many iterations. Hence the soliton acts like a particle, in that soliton 
solution collisions do not disrupt the wave form or amplitude in elastic processes [36]. 
 In hydrodynamics, the interpretation of the soliton or solitary wave is not completely 
clear [36]. One possible interpretation of this particular type of solution to the wave 
equation in this particular complex geometry, including the small coupling nonlinear 
term, is that the geometry selects the particular wave function. Note that this possible 
interpretation may have deep implications for the quantum measurement issue or the 
“collapse of the wave function”. In the usual nuclear energy levels, a particular state 
may be composed of a sum of various states of angular momentum and spin which sum 
to the total I and l  values. The amplitude of these states vary, with one predominant 
term [37]. In the current case, the soliton non-dispersive wave could represent the 
predominant, fixed amplitude solution with other smaller dispersive terms. 
 We have examined coherent collective states in plasmas with high temperature 
fusion media and electron gases in metal conductors. It is felt that these and other types 
of collective, coherent, dynamical phenomena can be explained by the soliton 
formalism. Other such phenomena which may also involve an intermediate temperature 
plasma is the illustrative so-called “ball lightning” [34]. 
 
6. Conclusion 
 
 We have formulated a complex multi-dimensional Minkowski space and associated 
twistor algebra which has nonlocal and anticipatory properties. One unique property of 
this geometry is its remote connectedness. We have formulated the Schrödinger 
equation in this multi-dimensional geometry. We identify the imaginary temporal 
component term as a small nonlinear term and determine soliton or solitary wave 
solutions. These non-dispersive, coherent waves are appropriate to define signals, in the 
space, which exhibit remote connectedness properties. Phenomena which involve 
remote correlation of events, such as Bell’s Theorem, Young’s double slit experiment, 
and super-coherence phenomena, demand nonlocality. The twistor algebra can be 
constructed to be mappable 1:1 with the spinor calculus and allows us to develop a 
unique formalism of Bell’s inequality. 
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 We also speculate that the nonlinear quantum model with coherent non-dispersive 
solutions to the Schrödinger equations, which is an expression of the remote nonlocality 
property of the space, may lend insight into the quantum measurement problem. A 
mechanism may be formulated which defines a connection between the observer and 
the observed. The properties of certain systems appear to demand a nonlinear, nonlocal 
anticipatory description. 
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