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We once again reference Theorem 6.1.2 of the book by Ellis, Maartens, and MacCallum in order to argue 

that if there is a non zero initial scale factor, that there is a partial breakdown of the Fundamental 

Singularity theorem which is due to the Raychaudhuri equation. Afterwards, we review a construction of 

what could happen if we put in what Ellis, Maartens, and MacCallum call the measured effective 

cosmological constant and substitute  
Effective in the Friedman equation. I.e. there are two ways to 

look at the problem, i.e. after
Effective , set 

Vac  as equal to zero, and have the left over   as scaled to 

background cosmological temperature, as was postulated by Park (2002) or else have 
Vac as proportional 

to 38 2~10Vac GeV which then would imply using what we call a 5 dimensional contribution to     as 

proportional to 
5 ~ const/ TD

    . We find that both these models do not work for generating an initial 

singularity.   removal as a non zero cosmological constant is most easily dealt with by a Bianchi I 

universe version of the generalized Friedman equation. The Bianchi I universe case almost allows for use 

of Theorem 6.1.2. But this Bianchi 1 Universe model almost in fidelity with Theorem 6.1.2. requires a 

constant non zero shear for initial fluid flow at the start of inflation which we think is highly unlikely. 
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1.   Introduction 
 

The present document is to determine what may contribute to a nonzero initial radius, i.e. not just 

an initial nonzero energy value, as Kauffman’s paper would imply, and how different models of 

contributing vacuum energy, initially may affect divergence from the first singularity theorem. The choices 

of what can be used for an effective cosmological constant will affect if we have a four dimensional 

universe in terms of effective contributions to vacuum energy, or if we have a five dimensional universe. 

The second choice will probably necessitate a tie in with Kaluza Klein geometries, leaving open possible 

string theory cosmology. In order to be self contained, this paper will give partial re productions of 

Beckwith’s (2013) earlier paper, but the 2
nd

 half of this document will be completely different, ie. When 

considering an effective cosmological constant.  With four different cases. The last case is unphysical, even 

if it has, via rescaling zero effective cosmological constant, due to an effective ‘fluid mass’ 
effM    

 

2. Looking at the First Singularity theorem and how it could fail 
 

Again, we restate at what is given by Ellis, Maartens, and MacCallum. (2012) as to how to state 

the fundamental singularity theorem 
 

Theorem 6.1.2 (Irrotational Geodestic singularities) If 0  ,  3 0p   , and 0p    in 

a fluid flow for which 0u  , 0   and 0 0H   at some time 0s , then a spacetime singularity , where 

either   0   or   , occurs at a finite proper time 0 0H  before 0s . 

 

As was brought up by Beckwith, (2013), if there is a non zero initial energy for the universe, a 

supposition which is counter to ADM theory as seen in Kolb and Turner (1991), then the supposition by 

Kauffman (2012) is supportable with evidence. I.e. then if there is a non zero initial energy, is this in 



any way counter to Theorem 6.1 above? We will review this question, keeping in mind that.   0   

is in reference to a scale factor, as written by Ellis, Maartens, and MacCallum. (2012), vanishing.  

3. Looking at how to form   0   for all scale factors. 

 

What was done by Beckwith (2013) involved locking in the value of Planck’s constant initially. Doing that 

locking in of an initial Planck’s constant  would be commensurate with some power of the mass within the 

Hubble parameter, namely 
0M ,  

 

0M                                                                                                                                                     (1) 

 

We would argue that a given amount of mass, 
0M would be fixed in by initial conditions, at the start of the 

universe and that if energy, is equal to mass ( E = M) that in fact locking in a value of initial energy, 

according to the dimensional argument of ~E   that having a fixed initial energy of ~E  , with 

Planck’s constant fixed would be commensurate with, for very high frequencies,   of having a non zero 

initial energy, thereby confirming in part Kauffmann( 2012) , as discussed in Appendix A, for conditions 

for a non zero lower bound to the cosmological initial radius. If so then we always have   0   . We will 

then next examine the consequences of   0  . I.e. what if   ( )a   for a FLRW cosmology?  

4.   0   and what to look for in terms of the Raychaudhuri-Elders equation for    ( )a   at 

the start of cosmological expansion  in FLRW cosmology 

We will start off with   ( ) H

initiala a e    with H an initial huge Hubble parameter 

 

  2 2 23 / 4 3 8 0a a G p a G a a const                                                                       (2) 

 

Equation (2) above becomes, with   ( ) H

initiala a e    introduced will lead to 

   2 2 2/ 8 / 8initial initiala const H G a const H G               
                              (3) 

 

5. Analyzing Eq. (3) for different candidate values of  , with 
Effective  for three cases. 

 

The equation to look at if we have 
Effective put into Eq. (3) is to go to, instead to looking at 

Effective Vac                                                                                                                               (4) 

 

Case 1, set 0Vac  , and 
start valueT



    such that in the present era with T about 2.7 today 

83 2~10Effective Vac GeV    (today)                                                                                                    (5) 

This would change to , if the temperature T were about 32 1910 ~10Kelvin GeV  
38 2~10Effective Vac GeV    ( Plank era)                                                                                              (6) 

The upshot, is that if we have Case 1, we will not have a singularity if we use Theorem 6.1 
  
Case 2, set 0Vac  , and  such that

start value    in the present era with T about 2.7 today 

The upshot, is that if we have Case 2, we will not have a singularity if we use Theorem 6.1 

Unless  
start value   is less than or equal to zero. In reality this does not happen, and we have 

83 2~10Effective Vac GeV    (always)                                                                                                 (7) 

 

Case 3, set 38 2~10Vac GeV , and set 
5 ~ const/ TD


     for all eras. Such that 

38 2 83 2

5~10 ~ const/ T ~10 ( )Effective Vac DGeV GeV today
           

                                         (8) 



38 2 38 2

5~10 ~ const/ T ~10 (Planck era)Effective Vac DGeV GeV
           

                           (9) 

The only way to have any fidelity as to this theorem 6.1 would be to eliminate the cosmological constant 

entirely. There is, one model where we can, in a sense “remove” a cosmological constant, as given by  

Ellis, Maartens, and MacCallum. (2012), and that is the Bianchi I universe model, as given on page 459. 
  

6. Bianchi I universe in the case of 1p const        

 

In this case, we have pressure as the negative quantity of density, and this will be enough to justify writing 

 

 
2 2 2

2 6 3 3 6

1

3
M

M








 
                                                                                  (10) 

If   H

initiale
  , we can re write Eq.(10) as, if the sheer term in fluid flow, namely  is a non zero 

constant term.( I.e. at the onset of inflation, this is dubious)  

 6 2 23H M     
                                                                                                    (11) 

In this situation, we are speaking of a cosmological constant and we will collect   effM M  such that 

6 2 23 effH M                                                                                                          (12) 

If we speak of a fluid approximation, this will lead to for Planck times looking at ~ initial
 so we solve 

1/6
1/3 23 effH M                                                                                                                            (13) 

The above equation no longer has an effective cosmological constant, i.e. if matter is the same as energy, in 

early inflation, Eq. (13) is a requirement that we have, effectively, for a finite but very large 2H  
2 3effH M                                                                                                                      (14) 

 

7. Use of  Thermal history of Hubble parameter  equation  represented by Eq.(14) 

 

Ellis, Maartens, and MacCallum. (2012) treatment of the thermal history will then be, if  100 1000g T   

 
4

2 2

2
(1.7)

p

T
H g T

M
                                                                                                                               (15) 

Then we have for Eq. (14),if the value of Eq.(15) is very large due to Plank temperature values initially 

  
4

2

2
(1.7) 3eff

p

T
g T M

M
                                                                                                                      (16) 

This assumes that there is an effective mass which is equal to adding both the Mass and a cosmological 

constant together. In a fluid model of the early universe. This is of course highly unphysical. But it would 

lead to Eq. (13) having a non zero but almost infinitesimally small Eq. (13) value. The vanishing of a 

cosmological constant inside an effective (fluid) mass, as given above by   effM M  means that if we  

treat Eq. I5 above as ALMOST infinite in value, that we ALMOST can satisfy Theorem 6.1 as written 

above. The fact that   100 1000g T  , i.e. we do not have infinite degrees of freedom, means that we get 

out of having Eq. (15) become infinite, but it comes very close.  
 

8. Use of Thermal history of Hubble parameter equation  represented by Eq.(3) and an effective 

cosmological parameter. 
 

Case 1,  if  0Vac  .  But the cosmological parameter has a temperature dependence.   Is the following true 

when the temperatures get enormous? 
 



 
4

2

2
(1.7) 8 initial start Value

p

T
g T G T

M

                                                                             (17) 

Not necessarily,. It could break down.  
 

Case 2, set 0Vac  , and  such that
start value   (cosmological constant). Then we have 

 
4

2

2
(1.7) 8 initial start Value

p

T
g T G

M
                                                                               (18) 

Yes, but we have problems because the cosmological parameter, while still very small is not zero or 

negative. So theorem 6.1.2 above will not hold. But it can come close if the initial value of the 

cosmological constant is almost zero. 
 

Case 3, when we can no longer use 0Vac  . Is the following true ? When the Temperature is Planck temp? 

 
4

2

2
(1.7)

p

T
g T

M
  >> 38 2 38 2

5~10 ~ const/ T ~10 (Planck era)Effective Vac DGeV GeV
           

 (19) 

Almost certainly not true.  Our section eight is far from optimal in terms of fidelity to Theorem 6.1. 

 

 We are close to Theorem 6.1.2 on our section seven. But this requires a demonstration of the constant 

value of the following term, in section 7 , namely in the Bianchi universe model, that the  sheer term in 

fluid flow, namely  is a non zero constant term.( I.e. at the onset of inflation, this is dubious). If it,  ,  is 
not zero, then even close to Planck time, it is not likely we can make the assertion mentioned above. In 

Section 7.  

 

 

9. Conclusion: Non singular solutions to cosmological evolution require new thinking. 
 

For section 7 above we have almost an initial singularity, if we replace a cosmological constant with 

  effM M  , And we also are assuming then, a  thermal expression for the Hubble parameter given by 

Ellis, Maartens and Mac Callum as a  
4

2

2
(1.7)

p

T
g T

M
  term which is almost  infinite in initial value.  Our 

conclusion is that we almost satisfy Theorem 6.1 if we assume an initially almost perfect fluid model  to get 

results near fidelity with the initial singularity theorem (Theorem 6.1). This is dubious in that it is unlikely 

that   , as a shear term  is not zero, but constant over time, even initially.   

 

The situation when we look at effective cosmological “constants” is even worse. I.e. Case 1 to Case 3 in 

section eight no where come even close to what we would want for satisfying the initial singularity theorem 

(theorem 6.1) 

 

We as a result of these results will in future work examine applying Penrose’s CCC cosmology to get about 

problems we run into due to the singularity theorem cosmology as represented by Theorem 6.1 above. 
 

Appendix A: Indirect support for a massive graviton 
 

We follow the recent work of Steven Kenneth Kauffmann, which sets an upper bound to concentrations of 

energy, in terms of how he formulated the following equation put in below as Eq. (A1). Equation (A1) 

specifies  an inter-relationship between an initial radius R  for an expanding universe, and a “gravitationally 

based energy” expression we will call  GT r which lead to a lower bound to the radius of the universe at the 

start of the Universe’s initial expansion, with manipulations. The term  GT r is defined via Eq.(A2) 

afterwards.  We start off with Kauffmann’s 

 
4

3

G

r R

c
R T r r d r

G
 

 
    

 
                           (A1) 



Kauffmann calls 
4c

G

 
 
 

 a “Planck force” which is relevant due to the fact we will employ Eq. (A1) at the 

initial instant of the universe, in the Planckian regime of space-time. Also, we make full use of setting for 

small r, the following: 
 

    2

0 ~ ( ) ~G G Graviton Initial entropyT r r T r const V r m n c 
                           (A2) 

 

I.e. what we are doing is to make the expression in the integrand proportional to information leaked by a 

past universe into our present universe, with Ng style quantum infinite statistics use of  
 

~Initial entropy Graviton count entropyn S  
                            (A3) 

 

Then Eq. (A1) will lead to  
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~ial entropy Graviton count entropyS  
    

                        (A4) 

Here, 
5~ ~ 10Initial entropy Graviton count entropyn S  

   , 
62~ 10Gravitonm grams

, and  

1 Planck length = Planckl  = 1.616199 × 10
-35

 meters 

where we set 
3Planck

G
l

c
   with ~ 10PlanckR l  , and 0  .  Typically ~ 10PlanckR l  is about 310 Planckl  at 

the outset, when the universe is the most compact.  The value of const is chosen based on common 

assumptions about contributions from all sources of early universe entropy, and will be more rigorously 

defined in a later paper.  
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