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Abstract: In previous papers [1,2] relating to the concept of Combined Gravitational Action (CGA) we have established the 

CGA-theoretical foundations as an alternative gravity theory that already allowed us to resolve -in its context- some unexpected 

and defiant problems occurred inside and outside the Solar System like, e.g., the anomalous Pioneer 10’s deceleration; the 

observed secular increase of the Astronomical Unit [3] and the apsidal motion anomaly of the eclipsing binary star systems DI 

Herculis and V459 Cassiopeia. All that has been done without exploring fully the CGA-formalism, hence, the main purpose of the 

present paper is to explore profoundly the CGA-equations in order to investigate, among other things, the secular perigee 

precession of the Moon; the secular perihelion advance of the planets; the CGA-effects in the non-compact and compact stellar 

objects.    
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1. Introduction 

Using only on Euclidean geometry and Galilean relativity principle, we were able to formulate a coherent 

alternative gravity theory exclusively founded on the concept of Combined Gravitational Action, according 

to which the Newton’s law of gravitation is not really a single force in the common classical sense, but a 

resultant of two force components, namely, the static force and the dynamic force. We have previously [1,2] 

shown that the theory (CGA) is very capable of predicting and explaining the anomalous Pioneer 10’s 

deceleration; the secular perihelion precession of the inner planets and the angular deflection of light 

passing near the massive object. These two last phenomena are known as the crucial tests support the 

general relativity theory (GRT). Here, our main motivation is the following: since in the previous papers 

[1,2] we did not explore and exploit fully the CGA-formalism, hence, now it is time to do this in order to 

study, among other things, the CGA-effects in the non-compact stellar objects like, e.g., the eclipsing binary 

star systems and the compact stellar objects like ,e.g., the binary neutron stars and pulsars. 

      Before the advent of the CGA as an alternative gravity theory, it was always stressed that the study of 

such compact stellar objects is exclusively belonging to GR-domain because their strong compactness is 

enough to bend the local space-time in such a way that some observable GR-effects should occur. However, 

as we shall see, the CGA is also able to investigate, predict and explain the same type of the compact stellar 

objects and all that in the context of Euclidean geometry and Galilean relativity principle. This reflects a 

tangible fact that the propagation of gravitational field and the action of gravitational force both are 

independent of the topology of space-time. But why shall the CGA arrive at the same results as GRT or even 

better in some cases? Because if we take the concept of the curvature of space-time apart, we find that 

contrary to the Newton’s gravity theory, the CGA and GRT take, at the same time, in full consideration the 

relative motion of the test-body and the light speed in local vacuum which in CGA is playing the role of a 

specific kinematical parameter of normalization and in GRT is considered as the speed of gravity 

propagation. The main consequence of the CGA-formalism [1,2] is the dynamic gravitational field 

(DGF),Λ , which is in reality an induced field, it is more precisely a sort of gravitational induction due to 

the relative motion of material body in the vicinity of the gravitational source. Certainly, the static 

gravitational field 
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is in general always stronger than DGF but Λ  has its proper role and effects. For example, as an additional 

field, Λ  is responsible for the perihelion advance of Mercury and other planets of the System Solar as we 
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have already seen in [1,2]. Curiously, in his 1912 argument, Einstein himself noted that the inertia of energy 

and the equality of inertial and gravitational mass lead us to expect that “gravitation acts more strongly on a 

moving body than on the same body in case it is at rest.” It seems Einstein’s remark reflects very well the 

expression of the combined gravitational field [1]: 

 

                                                                           Λγg  .                                                                         (2) 

  

It is clear from (2), that the combined gravitational field, g , may be reduced to the static gravitational 

field, γ , only for the case 0Λ , that is, when the material test-body under the action of field is at the 

relative rest with respect to the main gravitational source. Furthermore, as we know from the first paper [1], 

the combined gravitational field is derived from the combined gravitational potential energy (CGPE) which, 

here, is velocity-dependent-CGPE defined by the expression  
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where GMmk  ; G  being the Newton’s gravitational constant; M and mare the masses of the gravitational 

source A and the moving test-body B ; 
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is the relative distance 

between A  and B ; 222

zyx vvvv  is the velocity of the test-body B relative to the momentary inertial 

reference frame of source A ; and w  is a specific kinematical parameter having the dimensions of a constant 

velocity defined by  

 

          





ABv

ABc
w

ofvicinitytheoutsidemotionrelativeinis if,

ofvicinitythe insidemotion  relativeinis if,

esc

0
  ,                                      (4)  

 

where 0c  is the light speed in local vacuum and escv  is the escape velocity at the surface of the gravitational 

source A. Moreover, the CGPE (3) constitutes a fundamental solution to a system of three second order 

partial differential equations, called ‘potential equations’ because U is a common solution to these three 

equations. Indeed, it is easy to show under some appropriate boundary conditions that the combined 

potential field U  is really a fundamental solution to the following equations: 
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Since Eqs.(5-7) are homogeneous and admit the same potential function U as a fundamental solution this 

implies, among other things, that the test-body B is in state of motion at the relative velocity, v , sufficiently 

far from the main gravitational source A. also, as we shall see, the same fundamental solution is the origin of 

the CGA-equations of motion and the CGA-field equations because, as we have previously seen in the 

second paper [2], the potential function U  is a basic part of the CGA-Lagrangian. 
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     2. CGA-Equations of motion 

 

Now, we are arrived at the first part of our main subject: the exploration of the CGA as an alternative 

gravity theory. Thus, we shall show the relationship between CGA-equations of motion and those of 

Newton. For a moving test-body B of mass m characterized by the CGA-Lagrangian [2] and evolving under 

the action of the combined gravitational field g , there is a system of partial differential equations of motion 

derived from the CGA-Lagrangian like so:  
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Where UTL   is the CGA-Lagrangian; 2 ½ vmT   and ),( vrUU   are, respectively, the kinetic energy 

and the combined gravitational potential energy that characterized the test-body B. With  

zyx vzvyvx   ,, , 222

zyx vvvv   and 
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0 )()()( zzyyxxr  . After performing 

some differential and algebraic calculations, we get the analytical expressions of the expected CGA-

equations of motion 
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Or in compact form, we have 
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where                                       
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is the static gravitational potential. Further, it is clear from (10), when 1)/2( 2 rwGM  and 1)/( 2 wv ,  

Eq.(10) reduces to the well-known classical equation of motion  
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                                                3. CGA-Field Equations 

 

Since during its motion, the test-body is characterized by the combined gravitational potential energy and 

evolving under the action of the combined gravitational field g , therefore, the CGA-field equations derived 

from the potential function )( vr,UU  are: 
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After performing some differential and algebraic calculations, we obtain the analytical expressions of the 

expected CGA-field equations  
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Or in compact form, we have 
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Noting that the last quantity, on the right hand side of Eq.(15) is the rate change of new physical quantity 

called in the context of CGA 'gravitational momentum' as we will see. Moreover, let us now deduce the 

classical field equation. To this aim, it is best to note that for the case 1)/( 2 wv  and 1)/2( 2 rwGM , 

Eq.(15) reduces to the following well-known classical field equation 
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4. Generalization of Newton’s law of Gravitation 

 

In this section, we shall generalize, in the framework of the CGA, the famous Newton’s law of gravitation. 

So, in prior paper [1] we have already seen that the law of universal gravitational attraction 
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is not really a single force in the common classical sense, but a resultant of two forces that make between 

them an extremely small angle, θ , especially when the test-body is in state of motion.The extreme smallness 

of that angle means that the F  resultant force and its two components, namely, the static force SF and the 

dynamic force DF are almost in perfect superposition, and the resultant should be of the form 

),,( θvrFF  as we shall soon seen. First, we have from Eqs.(1), (2) and (15) the following expression of 

the dynamic gravitational field (DGF): 
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And without loss of generality, let us neglecting the second term in the right hand side of (18) and 

multiplying the two sides of Eqs.(1) and (18) by the mass, m , of the moving test-body B, we get after 

addition the expression of the resultant force                                                                                                                                             

                                                                                   DS FFF  .                                                            (19) 

 

Therefore, by using Eq.(19) and the well-known definition of the scalar product of two vectors 
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where θ  is between A
 
and B , which is, in our case, ranged between SF  and DF or equivalently is between 

γ  and Λ .  So, we have from (19) and (20)  
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from where we get                                                  
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Again, by taking into account Eq.(1) and the above considerations, we have  mSF  and 

 2

D )(v/wmF , thus after substitution in (22), we get the expected expression 
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where GMmk   and 0esc cwv  . 

 

Again, as it is easy to remark it, the expression of CGA-law of gravitation (23) is in excellent agreement 

with Einstein's claim, that's, " gravitation acts more strongly on a moving body than on the same body in 

case it is at rest." But why was the CGA-law (23) unknown? Because conceptually and physically, the 

famous Newton's law of gravitation (17) represents a limiting case for stationary or slowly moving material 
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objects, and also because the angle, θ , ranged between 
SF and DF is generally very small, perhaps, that's why 

the physicists have used the classical form (17), without forgetting that GRT itself is founded on this same 

law with some modifications when velocities become relativistic and gravitational field becomes very 

strong; for this reason GRT reduces to Newton's gravity in the weak-field and low-velocity limit. Thus 

according to above considerations, Eq.(23) should be regarded as correction,  

modification and generalization of the classical form (17). Although GRT does not consider gravity as a 

force properly speaking but interpreted as a curvature of space-time, however, it seems by applying the 

general force in Schwarzschild coordinate, Ridgely [4] was remarkably able to derive one expression of the 

gravitational force defined in the context of GRT 
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where re  is a unit vector pointing in the r-coordinate direction. From Eq.(24), it is straightforward to see 

that there is a singularity, that is to say when )/2( 2rcGMr  , F  becomes infinite. Such 

singularity/infinity is inherited from GRT which, as we know, is the realm of singularities! However, any 

coherent physical theory should prohibit the appearance of singularities/infinities in its formalism. Further, 

one of the most fundamental and profound distinction between a theory of physics and theory of 

mathematics is with respect to the concept of infinity. While in mathematics we can associate and attribute, 

in a perfectly logical and coherent way, the infinite value to the parameters, such associations are strictly 

meaningless when related to a theory of physics. And this is because in Nature nothing is infinite. All 

physical parameters of phenomena and objects of Nature are defined and characterized by finite values and 

only finite values.  Nature cannot be described through infinite concepts and values  as  

they are devoid of any meaning in the real physical world.  Now, returning to Eq.(24) and writing it without 

singularity by supposing the quantity )/2( 2rcGM  to be sufficiently less than unity, we obtain 

 

                                                  r
rc

GM

r

GMm
eF 









22
1 .                                                                (25) 

 

Let us show that Eq.(25) is an important particular case of Eq.(23) when the moving test-body B of mass m  

evolving inside the vicinity of the main gravitational source A  of mass M . Thus, by taking into account the 

above consideration and the definition (4), we get 
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Since in general  0θ , thus when the test-body B  orbiting the gravitational source A  at the relative radial 

distance r with the orbital velocity   2/1
/ rGMv  , we obtain after substitution in (26), the following 

expression: 
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Since  GMmk   and cc 0 , therefore, Eq.(25) coincides perfectly with Eq.(27). 
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                                 5. Role and Effects of Dynamic Gravitational Field 

 

In terms of fields, the existence of the combined gravitational field (2) means for example that the Sun is 

really exerting on the Earth two gravitational fields, γ  and Λ , via g  which is their resultant. The 

Newtonian gravity theory has ignored or missed the existence of Λ . Therefore such an omission implies 

γg   and that’s why the famous Newton’s law of gravitation (17) is unable to explain qualitatively and 

quantitatively the well-observed extra-precession of Mercury perihelion, ysec/centurarc11.43 . However, if 

historically, the GRT was capable of explaining the secular perihelion advance of Mercury this exploit is 

due in great part to the extra-field Λ or equivalently to the extra-force DF that may be deduced from Eq.(25) 

which as we know is, at the same time, a direct consequence of GRT for a test-body orbiting the main 

gravitational source and coincided perfectly with CGA-Eq.(27). Therefore, physically, the secular perihelion 

advance of Mercury and other planets of the Solar System is not caused by the curvature of space-time but 

causally is due to the couple 
D,FΛ that acting on each planet as an extra field-force as we shall see. Now, 

returning to Eq.(18). Since, without loss of generality, we have already neglected the second term in right 

hand side of Eq.(18), accordingly the reduced expression of the dynamic gravitational field (DGF) ,Λ , takes 

the form  
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Therefore, after performing some differential and algebraic calculations, we get the expression of theΛ -

components:  
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 From (29), we arrive at the expression of the magnitude  
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Eq.(31) means that DGF,Λ , may play a double role, that is to say, when perceived/interpreted as an extra-

gravitational acceleration 0)Λ(  or an extra-gravitational deceleration 0)Λ(  . More explicitly, we 

summarise the above considerations as follows: 1) When the velocity vector v  of the moving test-body B is 

directed towards the gravitational source A , the DGF,Λ , acting on B as an extra-gravitational acceleration 

of magnitude   
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2) And when the velocity vector v  of the same moving test-body B is directed on the opposite side of the 

gravitational source A , the DGF,Λ , acting on B as an extra-gravitational deceleration of magnitude   
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Since in [1], we have already studied in detail the role and effects of DGF, therefore, in the present work we 

focus our interest only in the case 0Λ  , i.e., when Λ  playing the role of an extra-gravitational 

acceleration. So, let us consider a fixed observer in the inertial reference frame of the supposed stationary 

gravitational source A , and the moving test-body B is relatively situated far from A  at a certain radial 

distance and supposing the following effects: 

       1)Time contraction:  When the DGF,Λ , playing the role of an extra-gravitational acceleration 0)Λ(   

,i.e., when the test-body B starts to approach progressively the supposed stationary gravitational source A , 

and the velocity vector, v , of B is directed towards A , the fixed observer should have the impression that 

the moving test-body B gains the time with respect to him, such ‘time gain’ is called-time contraction-. The 

amount of this temporal contraction is given by 
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 where t  is the apparent duration of the relative motion of the test-body B .  

 

2) Space contraction: Also, at the same time, the fixed observer should have the impression that the initial 

relative distance between A  and B  is in progressive contraction with respect to him, such-spatial 

shortening- is called, space contraction. The amount of this apparent variation in form of contraction is 

given by  
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3) Velocity increment: Furthermore, the same fixed observer should notice that the relative velocity of test-

body B is very slightly increasing with respect to him. Such small augmentation is called velocity  

increment. The amount of this increment is given by  

                                             

                                                                      1 vrtv .                                                                   (36)   

 

5.1. CGA-Effects in the Inner Solar System 

 

The structural simplicity and the mathematical beauty that should characterize any modern physical theory 

do not fully suffice by themselves as intrinsic quality but also the well established theory should be 

characterized by its proper power of prediction and description of new effects without, of course, forgetting 

the old ones. Based on these lines of thought, the CGA as an alternative gravitational theory should be 

firstly tested locally, in the inner solar system (ISS) and secondly at global level, i.e., in the outer solar 

system (OSS) which is our next purpose in this paper.  As we know it, according to the CGA-formalism, the 

famous Newton’s universal law of gravitation (17) is not really a single force in common classical sense, but 

a resultant F of two forces SF  and DF that make between them a very small angle, θ .The smallness of that 

angle means that the resultant and its two components are almost in perfect superposition. Thus the main 

CGA-prediction is the existence of the dynamic gravitational field,Λ , that is phenomenologically a sort of 
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gravitational induction caused by the motion of test-body in the static gravitational field, γ . In this sense, we 

said that the test-body is evolving in the combined gravitational field, g , which is in fact the resultant of γ  

and Λ . Furthermore, since Λ  may be acted/behaved like an extra-gravitational acceleration or deceleration, 

therefore as an additional field Λ  or force DF , how the couple 
D,FΛ  can appear its effects in ISS? 

       In terms of field-force, in spite of their weak magnitude with respect to
S,Fγ , the couple 

D,FΛ  has 

its proper effects in addition to those that have been already mentioned. These new-old additional effects 

are: the CGA-secular perigee precessions for the satellites and the CGA-secular perihelion precessions for 

the planets, particularly, when the DGF playing the role of an extra-gravitational acceleration. Einstein’s 

GRT explains such secular celestial phenomena as a result of the local curvature of space-time around the 

Sun. However, like Newton’s gravity theory, GRT does not take explicitly into account the existence of 

D,FΛ  as an additional gravitational field-force induced by the test-body during its motion in vicinity of 

the main gravitational source. Accordingly, in the context of CGA, we explain the above mentioned secular 

celestial phenomena as a direct consequence of 
D,FΛ . 

 

5.2. Average magnitude of 
i

i D,FΛ  in ISS  

Now, we wish to determine in the ISS the average magnitude of 
i

i D,FΛ for each planet. The ISS gives us 

a very good opportunity to test the CGA because in such a system, the Sun plays the role of the principal 

gravitational source A of mass M , and each planet iP may be separately played the role of the test-body iB of 

mass im , where subscript (i = 1,2,3 ...9) denotes the order of each planet iP in the ISS. For our purpose, 

Pluto is always considered as planet since for as long as this celestial body orbits the Sun like exactly the 

other planets. Thus according to the CGA, and in terms of field, the Sun as principal gravitational source is 

permanently exerting on each planet, iP , during its orbital motion at average radial distance , ir , with average 

orbital velocity, iv , a certain DGF, iΛ , acting as an additional field. In such a case, the average radial 

distance between the planet and the Sun’s centre of gravity is  
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Since )1(min

iii ear   and )1(max

iii ear  , where ia  and ie  are, respectively, the semi-major axis and 

eccentricity of planet iP . Hence, by substituting these relations in (37), we get immediately  
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Further, for the case when the DGF plays the role of an extra-gravitational acceleration, we find after 

substitution in (32):  
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Since we are dealing with the ISS, therefore we can, on average, consider each planet, iP , being 

relatively in vicinity of the Sun. Consequently, according to the definition (4), we obtain from (39), for 

the case 0cw  : 
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Furthermore, we have for the average orbital velocity the expression 
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hence by substituting (41) in (40), we get the important formula of the average magnitude of DGF as an 

extra-gravitational acceleration           
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Or in terms of force, the Sun as principal gravitational source, is permanently acting on each planet a certain 

dynamic gravitational force, which behaves like an additional force. The average magnitude of this force is 

given by  
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Where im  is the mass of planet iP . Now, from the formulae (42) and (43), the predicted average 

magnitude
i

i FD,Λ of the couple
i

i D,FΛ for each planet is computed and listed in columns 4 and 5 of 

Table1; where for the values of the mass of the Sun and of the physical constants we take    

kg109891.1 30

Θ MM ; 21311 -s-kgm1067384.6 G   and  -1

0 sm299792458c . 

 

 

 
                                                                                                  Predicted CGA-effects 
                                                                        

                          Planet                     ia                          im                                 iΛ                                   
i

FD
                                          

                                   m                     kg                       -2sm                      N                                                

   
                               Mercury          57.9210

9 
       3.2868010

23 
          1.00854710

-9 
  

           
3.31489310

14 
                          

                   
 

                            Venus            108.2510
9
        4.87044 10

24
        

  
1.54489210

-10             
7.52430410

14                      
 

                            Earth             149.6010
9
        5.9722010

24
          5.85311510

-11 
        3.49723610

14
                          

   
                 

                            Mars              227.9510
9
        6.394320 10

23
       1.65448610

-11 
        1.05793110

13
     

                            Jupiter          778.3010
9
        1.899770 10

27
        4.16040610

-13 
        7.89662810

14
    

                            Saturn          1.42810
12 

         5.68915210
26

         6.72972210
-14 

        3.82864110
13

        

                            Uranus         2.87010
12  

         8.72496010
25

        8.28964710
-15 

        7.23268410
11

     

                            Neptune       4.49710
12

          1.033848
 
10

26           
 2.15483010

-15          
  2.22776710

11
          

                            Pluto            5.90010
12

          1.254960 10
22

        9.54169910
-16 

        1.19744510
7
                 

   

                             

                  Table 1. Above, column 1 gives the planet’s name; column 2 gives the semi-major axis of each planet; 

                  column 3 gives the mass of each planet; columns 4 and 5 give, respectively, the values of iΛ and 
i

FD
 

                  for each planet.         
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5.3. CGA-Formula for the Perigee and Perihelion precessions 

 

After we have calculated the values of the average magnitude
i

i FD,Λ of the couple
i

i D,FΛ for each 

planet in ISS, at present, we will show that in despite of its weak average magnitude, the dynamic 

gravitational field Λ  or equivalently the dynamic gravitational force 
i

DF is the main responsible for the  

observed secular perigee precessions for the satellites and the observed secular perihelion precessions for 

the planets in ISS. Hence, since the radial distance between the moving /orbiting test-body B and the main 

gravitational source A , undergoes a certain apparent variation with respect to the fixed observer in A' s 

inertial reference frame; therefore, with the help of the equation (35), we derive the expected CGA- 

formula as follows: Let the test-body B orbiting the main gravitational source A  at a radial distance r with 

average orbital velocity v  during each average orbital period P . According to the equation (35), under the 

influence of Λ  as an additional gravitational field, the radial distance r  undergoes a certain variation rΔ  

when Λ  playing the role of an extra-gravitational acceleration, i.e., when the velocity vector v  of B  is 

directed towards the supposed stationary gravitational source A . This radial distance variation should 

induce a small secular advance of the perigee (if B is a satellite and A is a planet) or secular advance of the 

perihelion (if B is a planet and A  is a star). The relative position of the celestial test-body moving along a 

Keplerian ellipse oscillates between a minimum radial distance of )1(min ear   and a maximum radial 

distance of )1(max ear  over one orbital revolution. If during this temporal interval )( Pt  the ellipse 

processes in its plan by a very small amount Δ , the related variation rΔ  of the radial distance r  would be 

very approximately written as: 

 

                                                                                 arΔ ,                                                                     (44) 

From where we get 

                                                                          
a

r
(rad/rev)Δ ,                                                              (45) 

 

where a is the semi-major axis and (rad/rev) means that Δ  is expressed in ‘radian per revolution’. Also, we 

have according to the equation (35) and the fact that )( Pt  : 

 

                                                                               
2Λ

2

1
Δ P

a
 .                                                                 (46) 

 

Here P is the average orbital period expressed in seconds. Further, since here we are dealing with the 

average orbital parameters, thus according to (42), and by omitting the subscript‘i’, we can finally obtain, 

after substituting (42) into (46), the expected CGA-formula: 

 

                                                                                                     

2

2

0
2

1










ac

GMP
,                                                              (47) 

 

where M is the mass of the principal gravitational source. Also, we can express (46) in terms of the 

magnitude of the dynamic gravitational force, since mF /Λ D , where m  is the mass of the orbiting test-

body, thus after substitution in (46), we get 

                                                                               
am

PF 2

D

2

1
Δ  .                                                               (48) 
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The CGA-formulae (47) and (48) show us that 
D,FΛ  are explicitly responsible for the mentioned secular 

orbital precessions. Besides to what was already mentioned, it is worthwhile to note that, 

phenomenologically, during its orbital motion, the celestial test-body undergoes a certain apparent change 

in its orbital period and orbital velocity caused by the DGF when it behaves like an extra-gravitational 

acceleration. Hence, according to the equations (34) and (36), the change in orbital period and orbital 

velocity are, in the case of orbital motion, of the form                                       

 

                                                                       
21Λ

2

1
Δ PvP  ,                                                                 (49) 

        

                                                              Pv ΛΔ  .                                                                     (50) 

 

More explicitly, after omitting the subscript ‘i’ in (44) and by taking into account the expression of the 

average orbital velocity 12  Pav  , we can rewrite the above formulae as follows: 

 

                                                                        

2

2

0
4











ac

GMPP
P


,                                                            (51) 

 

                                                                     

2

0











ac

GM

a

P
v  .                                                            (52)        

              

                        

5.4. Calculation of the secular perigee precession of the Moon 

 

Without doubt, one of the most important celestial bodies, the Moon, is literally at the Earth’s doorstep.  The 

Moon is important for what it can tell us about, for example, the formation and evolution of the solar system 

(SS). It is important because it can serve as a veritable celestial laboratory enabling us to understand 

physical processes that take place on the Moon as well as on other similar SS-bodies and also to test some 

new gravity theories because it is natural to think of utilizing planetary satellites moving at average radial 

distance quite small in comparison with the semi-major axes of the planets’ orbits; and indeed, De Sitter 

[5,6,7] chose our Moon as a test-object as long ago as 1916. Although he was initially concerned with 

determining the modification of the Moon’s orbit resulting from the combined attraction of the Earth and the 

Sun under Einstein’s GRT, it was found that the modification imposed by Einstein’s theory on the 

gravitational field of the Earth alone resulted in an advance of the secular lunar perigee of 

cy/arcsec 60.0 [8]; where ‘ cy /arcsec ’ is the abbreviation for arc second per century. Hence, the correct 

calculation of the secular lunar perigee precession represents for any alternative gravity theory a fact of an 

extreme significance. In what follows we perform this calculation with the help of the CGA-formula (47).  

Since in the system Earth-Moon, the Earth playing the role of principal gravitational source A and the Moon 

has the role of test- body B . In the case of the Moon, we have m10844.3 8a , 

s102.360580d32.27min43h7d27 6P , while for the values of the mass of the Earth and of the 

physical constants, we take kg109722.5 24 MM , 21311 skgm1067384.6 --G  , 

1

0 sm458792299 c .  After substituting all these quantities in (47), we find 

       arcsec/cy062.0
32.27

36525
3600

180
10552.2rad/rev10552.2 1010 











 Δ .                 (53) 

 

This is in good agreement with the value found by De Sitter. 
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             5.5. Calculation of the secular perihelion precession of the Planets 

 

After we have applied the CGA-formula (47) to calculate the secular perigee precession of the Moon and we 

have got the numerical value (53) which is in good accordance with that found by De Sitter, thus at present, 

we focus our attention on the secular perihelion precession of planets in ISS. Furthermore, among other 

things, our main interest is to show more conclusively the applicability and generality of the (47) in ISS. 

Since in the SS, the Sun playing the role of principal gravitational source of mass kg109891.1 30

Θ MM  

and each planet has the role of celestial test-body, thus by inserting the subscript (i = 1,2,3 ... 9) and 

replacing M  with ΘM in (47), we get  

                                                                                     

2

2

0

Θ

2

1
Δ 










i

i
i

ac

PMG
 .                                                                  (54) 

 

So, based on (54), we can construct the following Table 2 of CGA-secular perihelion precession for each 

planet. Thus it what follows we perform these calculations exactly as we have previously done for the 

Moon.  

 

                                                                              

                                                                             CGA- Predicted values                  observed values 

                                                 

                          Planet                      ia                        iP                                iΔ                                                    
obsΔ i                                           

                                     m                      d                     arcsec/cy                                arcsec/cy                                               

  

                            Mercury          57.9210
9
              87.97                   43.1198     

         
                       43.1100    

                   
 

                            Venus            108.2510
9
            224.70  

               
         9.0270

          
                              8.4000

             
 

                            Earth             149.6010
9
            365.25    

  
               4.0227                                     5.0000

     
                 

                            Mars              227.9510
9
            686.97                    1.4035                                     1.3624     

                            Jupiter          778.3010
9
           4332.60                    0.0651 

 
                                   0.0637  

                            Saturn         1.42810
12 

          10759.20                     0.0142                                     0.0140     

                            Uranus        2.87010
12  

          30686.00                     0.0025                                    - - - (a)   

                            Neptune      4.49710
12

           60189.00   
                   

      0.0008                                    - - - (a)        

                            Pluto           5.90010
12

            90472.00                     0.0004                                    - - - (a)               

   
                            . 

Table 2. Above, column 1 gives the planet’s name; column 2 gives the semi-major axis of each planet; 

column 3 gives the average orbital period of each planet; column 4 gives the CGA-predicted values of 

iΔ  for each planet and column 5 gives the observed values. 

 

Notes: 
(a)

 Because their long orbital duration covering at least two human lifetimes, no data is currently 

available covering one full orbital revolution for Neptune and Pluto hence there is not yet any 

observational values for the precession of their perihelia.  
 

From the table 2, we may note that the CGA-predicted secular perihelion advance for each planet of the ISS 

is, generally, in good agreement with the observed value. 

 

 

          6. CGA-Effects in the Outer Solar System 

  

Eclipsing binary star systems are a great stellar laboratory particularly for testing the gravity theories via the 

study of the apsidal motions. Before the advent of the CGA, the apsidal motion is generally explained as 

follows: when the when the gravitational field of a star differs from that of a Newtonian point, the orbit of 

its companion will deviate from a Keplerian orbit. To lowest order, a perturbation to the 
1r -gravitational 

potential causes the periastron to rotate. This is the origin of apsidal motion. Usually, there are primarily 
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three effects that cause deviation from 1r -gravitational potential: the general relativistic correction to 

Newtonian gravity theory, the quadrupole moment that arises due to the rotational distortion of a star, and 

the quadrupole moment due to tidal distortion. The first two effects are relatively easy to calculate and are 

well understood. The third effect, the modification of the gravitational potential due to tidal distortion 

displays more complex behavior. The derivation of the formula for apsidal motion due classical 

(Newtonian) effects was first worked out by Cowling (1938) and Stern (1939). Also, before the 

establishment of the CGA, it has been argued for a long-time that in the vast majority of close binary 

systems, the apsidal motion is dominated by the classical and Relativistic effects. Hence, the observed rate 

of apsidal motion is due to the contribution of two terms: a classical term CLω  as well as the general 

relativistic term which, according to Levi-Cevita [9] and Kopal [10], is of the form 

  

                                               
)1(

)(2
102872.9)yr/deg(ω

2

3/2

213

GR
e

MM

P 










  

 ,                                  (55) 

 

where 1M , 2M  are in solar mass and P  is in days. In this sense, the observed apsidal motion rate should be 

  

                                                                   GRCLGRCLOBS ωωωω   .                           (56) 

 

However, it has been pointed out for a long-time the existence of a certain notable discrepancy between the 

expected theoretical value, GRCLω 
 , and  the observed value, OBSω , of the periastron advance of several 

eclipsing binary star systems likes, e.g., DI Herculis [11]; AS Camelopardalis [12];V1143 Cygni [13,14]; 

V459 Cassiopeia [15,16]. Guinan and Maloney [11] have argued that alternative theories of gravitation may 

be needed to explain the discrepancy. In the absence of a reasonable classical explanation for this 

discrepancy in the observed apsidal motions, there exists the possibility that the pointed out discrepancy is a 

sure signal of the limit of Einstein's GRT, that's why Moffat [17,18,19] proposed a nonsymmetric gravity 

theory (NGT). 

 

                                                                   

                                                                           6.1. CGA-Apsidal Motion 

 

Let us consider a hypothetical eclipsing binary system BA, of masses AM and BM )( AB MM  evolving in 

the mutual combined gravitational field, Λγg  . the system comprises two stars A  and B  closely 

moving in elliptical orbits around their common center of mass, as illustrated below in the Figure 1. Each 

star moves in its orbit according to Kepler’s laws, at all times the two stars are found on opposite sides of a 

line passing through their common center of mass.        

       How the CGA-apsidal motion occurs? Since the orbits of the two stars A  and B are elliptical, the two 

are closer together at some times than at others, so that the dynamic gravitational field,Λ , or equivalently 

the dynamic gravitational force, DF , alternately strengthens at periastron and weaken at apastron. In view of 

the fact that DF  is physically an extra-gravitational force, therefore, its action as an additional force causes 

the orbit of the system to advance. The orbit of the system appears to rotate with time. 
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                                                                                A    MA     
                                                                      

   

                                                                      

 

  

                                               
                                   
                                                                                                                                                                                                                 

                                                                            MB    B 
 

 

 

 

Figure 1: The orbit of the hypothetical binary star system  BA, shown from above the orbital plane. The solid line 

represents the orbit of the primary (A) component and the dashed line the orbit of the secondary (B). The lines from the 

common center of mass towards the orbits indicate the relative positions of the periastron. The big dots indicate the relative 

positions of the stars at time of mid primary eclipse.             

 

The permanent action of DF  prevents the orbit to be closed ellipse, but a continuous elliptical arc whose 

point of closest approach (periastron) rotates with each orbits. In fact, the rotation of the system’s periastron 

is very analogous to the advance of the perihelion of the planets in their orbits.  

 
 

6.1.1. Equations of CGA-Apsidal motion for Binary Star Systems 
 

It is worthwhile to note that the expression of the formulae (42), (43), (47), (51) and (52) only hold for the 

motion of planets about the Sun. In this case, the mass ratio, BA MMq / , of system  BA,  is very 

comparable to zero ( 0q ), that's why we have supposed that the Sun is at rest and it is an inertial reference 

frame. Further, the orbital eccentricity, e , does not occur in the expression of these formulae because we 

have taken 02 e , such approximation is due to the great mean distance of the planets from the Sun. 

however, the above considerations are not always legitimate particularly for the eclipsing binary star system 

i.e., when A  and B  playing the role of two stars of masses AM  and BM , which are gravitationally linked. 

Contrary to the system Sun-planet system, the study of eclipsing binary star systems is not easy task because 

the mass ratio, q , is not always less than unity but sometimes is (approximately) equal to unity and also the 

distance separating the two stars is more often ranged between the Sun's radius km)695508( Θ R and AU , 

hence, that's why the orbital eccentricity of the system should be taken into consideration whatever its 

numerical value. Therefore, for the case when 1q , the star A of mass AM  is the main gravitational source 

and the second star B of mass BM  playing the role of test-body, and when 1q , the two stars may be 

mutually played the role of the main gravitational source. Consequently, in the context of the CGA, the 

knowledge of q  with enough accuracy is a fundamental condition because this mass ratio is an essential 

element for the function )( qe,f called: orbital eccentricity-mass ratio function, and for the scalar parameter 

M  which having the physical dimensions of mass; therefore the two scalar quantities { )( qe,f ;M } should 

be taken into account when we would generalize the formulae (42), (43), (47), (51) and (52) to the eclipsing 

binary star systems. Hence, for the seek of simplicity, accuracy and generality, the cited formulae should 

very slightly modified after omitting the subscript‘i’ and when we take the usual notation for the apsidal 

motion rate,ω , the formulae (42), (43), (47), (51) and (52) become, respectively, as follows: 
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Where )( qe,f is the orbital eccentricity-mass ratio function andM is a scalar parameter having the 

dimensions of mass, and both are defined as follows: 
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A
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M .                                                                       (63) 

                                                                                         

Thus, the generalized expressions (57-61) are the CGA-formulae that permit us to investigate the CGA-

effects in eclipsing binary star systems and in binary pulsars as we will see soon. Also, the CGA-effects are 

in fact post-Keplerian/Newtonian effects since they concern at the same time the orbital parameters and the 

gravitational field-force. Before listing in the Table 2 the expected CGA-effects for some well-known 

eclipsing binary star systems, we prefer to beginning with the investigation of CGA-effects in DI Herculis 

and AS Camelopardalis in order to make easy the comprehension of the process of calculation via CGA-

formulae. 
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                                                                 6.1.2. AS Camelopardalis 

 

AS Cam is an eclipsing binary star system. Like DI Her and a few other systems, AS Cam is an important 

test case for gravity theories. Accurate determinations of the orbital and stellar parameters of AS Cam have 

been made by Hilditch [20,21] and Khalliulin & Kozyreva [22] that permit the expected classical and 

relativistic contributions to the apsidal motion to be determined reasonably well:  

 

                                                             /cydeg80.35ωCL  ,                                                                     (64) 

and   

                                              /cydeg50.8ωGR  .                                                                      (65) 

 

Maloney et al., [12] have gathered all the published timings of primary and secondary minima, and have 

reinforced these with eclipse timings from 1899 to 1920 obtained from the Harvard plate collection. Least-

square solutions of the eclipse timings extending over an 80 yr interval yield a smaller than expected apsidal 

motion rate of 

                                                               /cydeg15ωOBS  ,                                                                       (66) 

 

in agreement with that found by [22] from a short set of data. As we can remark it, the observed apsidal 

motion rate (66) for AS Cam is about one-third that theoretically expected from the combined classical and 

relativistic effects: 

                                                         /cydeg30.44ω GRCL 
 .                                                                 (67) 

 

Thus, AS Cam joins DI Her in having an observed apsidal motion rate significantly less than that predicted 

from Newtonian and Einsteinian gravity theory. Here we shall see that there are two main causal sources of 

this profound disagreement which are, respectively, the high over estimation of classical contribution to the 

apsidal motion and the complete ignorance of the existence of the couple
D,FΛ .However, when we 

neglected or minimize the evoked classical contribution and applying the CGA-formalism, we shall find a 

CGA-apsidal motion rate, CGAω , compared to GRω and their combination, GRCGAω 
 , yields a value in good 

agreement with the observed rate (66). To this end, we have according to [12] the following orbital and 

stellar parameters of AS Cam: 1695.0e  ; 430.3P  days; Θ20.17 Ra   ; Θ3.3 MM A   ; Θ5.2 MMB   ; 

7575.0q . Since 4/1e  and 1q , therefore the eccentricity-mass ratio function (62) and scalar 

parameter (63) take, respectively, the form :   

                        

                                              24
2111

6
1 )()(),( eeeeef

q
q

q  ,   AMM  ,    

and the  formula (59) becomes,  
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ac

PGMqef A  

                                                                                                                             

-Numerical Application: We have 7279.2),( qef ; 1326 sm101.30 PGM A ; 13282

0 sm103.4 ac ; 

and by substituting in the above formula, we get  

                                                                    

                                                                 /cydeg60.7ωCGA  .                                                                 (68) 

 

This result means that the CGA-effects contribute to the total observed apsidal motion rate at 50.66 % and 

consequently if we neglect or minimize the classical contribution, we find that the CGA-contribution 
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completes the GR-effects and in this case, the theoretical expected apsidal motion rate should be of the 

form:                                 

                                           deg/cy10.16deg/cy08.5deg/cy7.60ω GRCGA 
 .                                 (69) 

 

This is in good agreement with the observed value (66). For the other CGA-effects, we apply the same 

formulae (i); (ii) and (iii), and after direct numerical application, we get: N101476.6 24

D F ; 

s101570.2 1P ;  11 sm106644.3 v .       

         

6.1.3. DI Herculis 

  

Again, we are returning to the famous eclipsing binary star system DI Her because of its historical and 

astrophysical importance. For the past three decades, and until recently, there has been a serious discrepancy 

between the observed and theoretical values of the apsidal motion rate of DI Her, which has even been 

interpreted occasionally as a possible failure of GRT since the GR-contribution ( /cy)deg34.2ωGR  is 

dominant for DI Her. Now, accuracy measured apsidal motion rate of           

                                                          

                                                                  /cydeg04.1ωOBS  ,                                                                    (70) 

 

determined from new analysis of numerous times of primary and secondary eclipse [23]. As it has been 

cited, the most remarkable feature of DI Her is that its observed apsidal motion rate (70) is significantly 

smaller than that theoretically predicted by classical and GR-contribution. The total predicted rate is  

 

                                                                /cydeg27.4ω GRCL 
 .                                                                 (71) 

 

However, recent observations of the Rossiter-McLaughlin effect [24,25], which was interpreted by Albrecht 

et al., [26] as the reason for the anomaly is that the rotational axes of the stars and the orbital axis are 

misaligned, which changes the predicted rate of precession. Thus, according to [26] the misalignment causes 

retrograde apsidal motion rate, RGω , of 

 

                                                                  /cydeg14.2ωRG  ,                                                                 (72) 

 

and by taking into account the total predicted rate (71), we get the net theoretical precession rate of 

                                                       

                                                     /cydeg13.2ωωω RGGRCLNET  
 .                                                   (73)            

                                               

However, it seems even with the introduction of the retrograde apsidal motion rate (72) the discrepancy 

persistes since the net rate of precession (73) amounts to 200 % or more. At present, we will see that the 

CGA, as an alternative gravity theory, should be able to handle this problem very well and without 

introducing the retrograde apsidal motion rate (72), that is only by applying the CGA-formalism, we will 

obtain a value of CGA-apsidal motion rate, CGAω , exactly comparable to the observed rate (70). So to this 

aim, we have according to [26] the following orbital and stellar parameters: 489.0e ; 55.10P   days;  

Θ12.43 Ra  ; Θ15.5 MM A  ; Θ52.4 MMB  ; 8776.0q . Since 2/1e  and 1q , therefore, the 

eccentricity-mass ratio function (62), scalar parameter (63) and the formula (59) take, respectively, the form 

:  

                                                     qqqqq eeeef
2
1

1
33),(  ,   AMM  ,        

and 
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-Numerical Application: We have 963211.1),( qef ; 1326 sm106.23 PGMA ;  13292

0 sm107.2 ac ; 

and after substitution in the above formula, we obtain  

                                                   

  /cydeg03720.1
55.10

36525
3600

180
1062022.5rad/rev1062022.5ω 66

CGA 







 


 .                  (74) 

 

This is in excellent agreement with the observed value of /cydeg04.1ωOBS   at 99.73 % !. This result 

shows us that the CGA-contribution for DI Her is dominant. For the other CGA-effects, viz., the average 

magnitude of the dynamic gravitational force; exerted by the main gravitational source A  of mass AM  on 

the orbiting test-body B of mass BM ; the average change in orbital period and orbital velocity of 

system BA, .  Since 1q , thus the formulae (58), (60) and (61) become, respectively: 
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Direct numerical application gives us the following values of the expected CGA-effects: 

N10730.1 24

D F ; s108640.3 1P ; 
11 sm1075160.1 v . 

       Now, we conclude the investigation of CGA-effects in noncompact stellar objects by selecting four 

other well-known eclipsing binary star systems: V1143 Cygni, V541 Cygni, V526 Sagittarii and V459 

Cassiopeia. Their orbital, stellar parameters and CGA-effects are listed in Tables 3 and 4, respectively. 

 

                                                                              
                                                                          

                        System                    P                 e                  Θ/ Ra          Θ/ MM A        Θ/ MM B            Ref..                                                                                                                 

                                       d                                                                            

  

                            V 1143 Cyg           7.640              0.540             22.67     
             

1.355             1.327
   
                a

                    
 

                            V 541Cyg            15.340              0.479  
              

 43.82
          

        2.240             2.240                  b    
             

 

                            V 526 Sgr              1.920              0.2194    
  
     10.27              2.270             1.680                  c 

    
                 

                            V459 Cas              8.460               0.0244          27.67              2.020             1.960                  d, e   

   
                            . 

                         
                       Table 3. Orbital and Stellar Parameters of 4 selected Eclipsing Systems 

 

                                         Ref.: a) Albrecht et al. [26]; b) Lacy [27] ; c) Lacy [28] ; d) Lacy et al., [15] ; e) Dariush [16] 
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                                                                                                   Predicted Values of the CGA- effects                   

                                                  

                        System                     OBSω                           CGAω                  DF                      P                       vΔ                                           

                                    deg/yr                    (deg/yr                N                     (s)                   (m/s)                                                 

  

                            V 1143 Cyg        3.37010
-2

               3.20010
-2

        9.49710
23

         5.22510
-1

        2.37510
-1

               
 
              

            
 

                            V 541Cyg           0.60010
-2

               0.60010
-2

        6.19310
23             

8.45510
-1             

1.84210
-1

                                     
             

 

                            V 526 Sgr           2.454                       0.164                 9.26310
24

        1.41010
-1

         4.59810
-1

       

                            V459 Cas           6.04510
-2 

              1.50010
-2

         1.69810
24

        7.04010
-1              

3.18510
-1

  

   

    

                                              Table 4. Predicted values of the CGA-effects 

 

 

 7. Compact Stellar Objects as Test of CGA 

 

After we have investigated the CGA-effects in the noncompact stellar objects like the eclipsing binary star 

systems by showing that in addition to classical and relativistic effects, there are new other effects caused by 

the couple
D,FΛ . For example, the computed CGA-apsidal motion rate, CGAω , is in some cases in excellent 

agreement with the observed ones and sometimes it is comparable to the GR-rate, GRω . Also, CGA and 

GR-contribution may be together played the role of mutual complementarity like, e.g., the case of AS Cam 

when we have omitted the CL-contribution; consequently, the cited discrepancy was immediately 

concealed.  

       At present, we wish to push forward the frontiers of application of the CGA to investigate the same 

CGA-effects in the compact stellar objects like, e.g., the white dwarfs, neutron stars and pulsars. That is to 

say, we test the CGA in critical domain where the gravitational field is extremely strong. Here, we focus our 

main interest in some well-known binary pulsars (pulsars and their companions). But first what's a pulsar? 

        Pulsar (pulsating star) is a rapidly rotating neutron star that emits a radio beam that is eventually 

powered by the pulsar’s rotational energy and that is centered on the magnetic axis of the neutron star. As 

the magnetic axis and the hence the beam are inclined to the rotation axis, the pulsar acts as a cosmic 

lighthouse, and a pulsar appears a pulsating radio source. The moment of inertia and the stored rotational 

energy of pulsars are large, so that in particular the fast rotating millisecond pulsars deliver a radio “tick” 

per rotation with an extraordinary precision that rivals even the best atomic clocks on Earth! As they 

concentrate an average of 1.4 solar mass on a diameter of only about 20 km, pulsars are exceedingly dense 

and compact, that’s why they representing the known densest matter in the observable universe. The 

resulting gravitational field near the pulsar’ surface is large, thus enabling strong-field tests of gravity 

theories. Furthermore, pulsars and their orbiting companions are generally compact enough that their motion 

can be treated as that of two point masses. Thus in the context of CGA, we can logically consider each 

pulsar as the main gravitational source A  of mass AM  and each orbiting companion as the test-body B  of 

mass BM  . Consequently, the causal source of CGA-effects in the binary pulsar systems is exactly of the 

same nature as for ordinary (noncompact) eclipsing binary star systems. Therefore, the combined 

gravitational field, Λγg  , becomes more and more strong as the pulsar and its companion are so close 

together that an ordinary star like the Sun could not fit in their orbits. As result, the couple
D,FΛ should 

have its intensity amplified drastically. That’s why, e.g., the value of the CGA-apsidal motion rate of binary 

pulsar systems should be more important than that of ordinary eclipsing binary star systems.  Like before, 

that is when we have studied the latter systems, the determination of the CGA-effects in binary pulsars 

should show us, among other things, that the usual relativistic interpretation of gravity as a deformation of 

space-time is not a physical reality but a pure topological property of Riemann geometry which is 

conceptually non-Euclidean. We have selected some well-known binary pulsars in order to show the 

importance of GCA as an alternative gravity theory capable of studying the compact stellar objects via the 
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investigation of the CGA-effects in such systems. Before summarizing our results in Table 5, we prefer to 

start with the study of the famous binary pulsars PRS B1913+16, binary pulsar PRS B1534+12 and the 

remarkable double binary pulsar PSR J0737-3039. 

 

7.1. Binary pulsar PSR B 1913+16 

 

The PRS B1913+16 is the first binary pulsar discovered in 1974 by Russell Hulse and Joseph Taylor [29]. It 

is since then, considered as an ideal celestial laboratory providing decisive tests of a wide class of gravity 

theories because the extreme conditions are well available in such massive and compact astrophysical 

objects, specifically, their strong gravitational field and rapid motion. Thus the investigation of the CGA-

effects in the binary pulsar systems using the same CGA-formalism as for the case of the eclipsing binary 

star systems, is all the more impressive considering that, in contrast to some alternative gravity theories, 

CGA has no ‘freedom’ to adjust its predictions. It is highly constrained by its inadjustable formalism, that is 

to say, the CGA-equations do not contain adjustable parameters. Let us now investigate the CGA-apsidal 

motion and other CGA-effects in PSR B 1913+16. We have according to Weisberg and Taylor [30] the 

f o l l o w i n g  o r b i t a l  a n d  s t e l l a r  p a r a m e t e r s  o f  P S R  B  1 9 1 3 + 1 6 :     

6171.0e ; d322997.0P  ; m10950100.1 9a ;  deg/yr226595.4ωOBS  ; Θ4414.1 MM A   ; 

Θ3867.1 MMB   ; 9620.0q . Since 1/2>e  and 1q ; therefore the eccentricity-mass ratio function (62), 

scalar parameter (63) and the formula (59) take, respectively, the form :  
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-Numerical Application: We have 539441.1),( qef ; 1325 sm101.047705)(  PMMG BA ;  
13272

0 sm10140077.1 ac .  By substituting in the above formula, we get  

 

                                                             /yrdeg213832.4ωCGA  .                                                             (75) 

 

This is in excellent agreement with the observed value at 99.70 %. For the other CGA-effects, the 

formulae (58), (60) and (61) take for the case 1q  the following expressions, respectively:   
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Direct numerical application gives us the following values of the expected CGA-effects: 

N10831340.5 26

D F ; s10877100.1 1P ; 1sm902849.5 v . 
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7.2. Binary pulsar PSR B 1534+12 

 

PRS B1534+12 had been discovered in1990 by Wolszczan [31]. A discussion of the relativistic effects in 

this binary system, and the resulting updated tests of GRT have been presented by Stairs et al.,[32]. Let us 

now determine the CGA-apsidal motion rate and the other CGA-effects in PRS B1534+12. We have, 

according to Nice et al.,[33], the following orbital and stellar parameters of PRS B1534+12: 274.0e ; 

d420.0P ; m10281697.2 9a ; deg/yr756.1ωOBS  ; Θ34.1 MMM BA  ; 1q . In view of the fact 

that 1/4>e  and 1q , therefore the eccentricity-mass ratio function (62), scalar parameter (63) and formula 

(59) take, respectively, the form:   
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Numerical application: we have 036846.1),( qef ; 1325 sm101.291011)(  PMMG BA ; 
13272

0 sm10560761.1 ac . By substituting all these values in the above formula, we obtain: 

 

                                                             /yrdeg767398.1ωCGA  .                                                              (76) 

 

This is in good agreement with the observed value. For the other CGA-effect, since 1q  therefore we shall 

us the formulae (iv), (v) and (vi). Direct numerical application gives: N10159948.3 26

D F ; 

s10975787.1 1P ; 1sm302114.4 v . 

 

7.3. Double pulsar PSR J0737- 3039 

 

The PSR J0737-3039 is the first double pulsar discovered in 2003 at Australia's Parkes Observatory by an 

international team led by the radio astronomer Marta Burgay during a high-latitude pulsar survey [34] which 

consists of two pulsars orbiting the common center of mass in a slightly eccentric orbit (e = 0.0877) of only 

2.4-hr orbital duration and pulse period of 22.7 ms. It was immediately found to be a member of the most 

extreme binary system ever discovered [35]: its short orbital period is combined with a remarkably high 

value of the observed periastron advance ( deg/yr9.16ωOBS  ), i.e., four times larger than for PRS 

B1913+16! Like before, we will show that this double pulsar represents a truly unique gravitational 

laboratory for CGA by investigating the CGA-effects. According to the CGA, this is mainly due to the fact 

that the magnitude of the mutual dynamic gravitational force for the double pulsar PSR J0737-3039 is eight 

times larger than for PRS B1913+16 as we will see. We have according to [36] the following orbital and 

stellar parameters: 0877.0e ; d102251.0P ; deg/yr9.16ωOBS  ;  m108.8 8a ; Θ338.1 MM A   ; 

Θ249.1 MMB  ; 9334.0q . Since 1/4e  and 1q ; therefore the eccentricity-mass ratio function (62), 

s c a l a r  p a r a m e t e r  ( 6 3 )  a n d  t h e  f o r m u l a  ( 5 9 )  t a k e ,  r e s p e c t i v e l y ,  

the form :  

                                                               1),( qef ;   BA MM M  ;        

and 
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-Numerical Application: 1),( qef ; 1324 sm103)(  PMMG BA  ; 13262

0 sm103116.2 ac  . 

After substitution in the above formula, we get 

  

                                                                     /yrdeg096440.17ωCGA  .                                                   (77) 

 

This is in good agreement with the observed value of deg/yr9.16ωOBS  . For the other CGA-effects, we 

have from the formulae (iv), (v) and (vi), for the case 1q : N10677426.4 27

D F ;  

s10174517.1 1P ; 1sm632930.16 v . As it was already mentioned, the magnitude 

( N10677426.4 27 ) of the mutual dynamic gravitational force for PSR J0737-3039 is eight times larger 

than ( N10831340.5 26 ) for PRS B1913+16 that’s why the high value of the CGA-apsidal motion rate 

( /yrdeg096440.17 ) is four times larger than ( /yrdeg213832.4 ). Now, we can affirm from the study of the 

solar system, eclipsing binary star systems and binary pulsars that the CGA, as a gravity theory, is capable 

of predicting some old and new gravitational effects without evoking the curvature of space-time since the 

CGA is exclusively established in the framework of Euclidean geometry and Galilean relativity principle. 

 

 

8. Conclusion 
 

The CGA could be regarded as an alternative gravitational model to compare with the others that have 

already existed for a long time.  As we have seen, the CGA enabled us to study and solve some old and new 

problems related to gravitational phenomena through a novel comprehension and interpretation of the 

gravity itself; the famous Newton’s law of gravitation was corrected and reformulated in a new more  

general form. 
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