Logic Systems Lattices, classical logic and quantum logic

#### Logic – Lattice structure

- A lattice is a set of elements *a*, *b*, *c*, ...that is closed for the connections ∩ and U. These connections obey:
  - The set is partially ordered. With each pair of elements a, b belongs an element c, such that  $a \subset c$  and  $b \subset c$ .
  - The set is a  $\cap$  half lattice if with each pair of elements a, b an element c exists, such that  $c = a \cap b$ .
  - The set is a U half lattice if with each pair of elements *a*, *b* an element *c* exists, such that *c* = *a* ∪ *b*.
  - The set is a lattice if it is both a ∩ half lattice and a U half lattice.

#### Partially ordered set

• The following relations hold in a lattice:

$$a \cap b = b \cap a$$
  

$$(a \cap b) \cap c$$
  

$$= a \cap (b \cap c)$$
  

$$a \cap (a \cup b) = a$$
  

$$a \cup b = b \cup a$$
  

$$(a \cup b) \cup c$$
  

$$= a \cup (b \cup c)$$
  

$$a \cup (a \cap b) = a$$

- has a partial order inclusion  $\subset$ : a  $\subset$  b  $\Leftrightarrow$  a  $\subset$  b = a
- A complementary lattice contains two elements *n* and *e* with each element a an complementary element a'  $a \cap a' = n \quad a \cap n = n$  $a \cap e = a \quad a \cup a' = e$ 
  - $a \cup e = e \quad a \cup n = a$

#### **Orthocomplemented lattice**

- Contains with each element *a* an element *a*" such that:
- $a \cup a'' = e$ Distributive lattice $a \cap a'' = n$  $a \cap (b \cup c)$ (a'')'' = a $= (a \cap b) \cup (a \cap c)$  $a \subset b \Leftrightarrow b'' \subset a''$  $a \cup (b \cap c)$  $= (a \cup b) \cap (a \cup c)$

#### Modular lattice $(a \cap b) \cup (a \cap c) = a \cap (b \cup (a \cap c))$

Classical logic is an orthocomplemented modular lattice

# Weak modular lattice

• There exists an element *d* such that

 $a \subset c \Leftrightarrow (a \cup b) \cap c$ =  $a \cup (b \cap c) \cup (d \cap c)$ • where *d* obeys:  $(a \cup b) \cap d = d$  $a \cap d = n \quad b \cap d = n$  $[(a \subset g) \text{ and } (b \subset g) \Leftrightarrow d \subset g$ 

#### Atoms

In an atomic lattice

$$\exists_{p \in L} \forall_{x \in L} \{ x \subset p \Rightarrow x = n \}$$

 $\forall_{a \in L} \forall_{x \in L} \{(a < x < a \cap p)\}$ 

 $\Rightarrow (x = a \text{ or } x = a \cap p) \}$ *p* is an atom

### Logics

- Classical logic has the structure of an orthocomplemented distributive modular and atomic lattice.
- Quantum logic has the structure of an orthocomplented weakly modular and atomic lattice.
- Also called orthomodular lattice.

#### Hilbert space

The set of closed subspaces of an infinite dimensional separable Hilbert space forms an orthomodular lattice
 Is lattice isomorphic to quantum logic

<u>Back</u>

#### Hilbert logic

- Add linear propositions
  - Linear combinations of atomic propositions
- Add relational coupling measure
  - Equivalent to inner product of Hilbert space
- Close subsets with respect to realational coupling measure
- Propositions ⇔ subspaces
- Linear propositions ⇔ Hilbert vectors

#### Superposition principle

Linear combinations of linear propositions are again linear propositions that belong to the same Hilbert logic system

# Isomorphism Lattice isomorhic Propositions ⇔ closed subspaces

# Topological isomorphic Linear atoms ⇔ Hilbert base vectors

# The Higgs mechanism

#### The HBM has its own solution

http://www.youtube.com/watch?v=JqNg819PiZY



 $= (o_{\mu}\rho) + i o_{\mu}o [\rho o_{\mu}\rho - \rho o_{\mu}\rho]$ 

Thus,  $e^{i\theta}$  is no symmetry!

#### Higgs mechanism⇔HBM



#### Gauge transformation

Covariant derivative

$$D_{\mu}\psi = \partial_{\mu}\psi - i A_{\mu}\psi$$
$$= (\partial_{\mu}\theta + 1)i\rho e^{i\theta}$$
$$A'_{\mu} = \partial_{\mu}\theta + A_{\mu}$$

The new Lagrangian is

$$\mathcal{L} = D_{\mu}\psi D_{\mu}\psi^* = f^2(\partial_{\mu}\theta + A_{\mu})^2 = f^2 A_{\mu}'^2$$

 $\theta$  is replaced by a new field  $A'_{\mu}$ The factor *f* represents mass