Logic Systems

Lattices, classical logic and quantum logic

Logic - Lattice structure

- A lattice is a set of elements a, b, c, \ldots that is closed for the connections \cap and U. These connections obey:
- The set is partially ordered. With each pair of elements a, b belongs an element c, such that $a \subset c$ and $b \subset c$.
- The set is a \cap half lattice if with each pair of elements a, b an element c exists, such that $c=a \cap b$.
- The set is a \mathbf{U} half lattice if with each pair of elements a, b an element c exists, such that $c=a \cup b$.
- The set is a lattice if it is both $a \cap$ half lattice and a U half lattice.

Partially ordered set

- The following relations hold in a lattice:
$a \cap b=b \cap a$
$(a \cap b) \cap c$
$=a \cap(b \cap c)$
$a \cap(a \cup b)=a$
$a \cup b=b \cup a$
$(a \cup b) \cup c$
$=a \cup(b \cup c)$
$a \cup(a \cap b)=a$
- has a partial order inclusion C:

$$
\mathrm{a} \subset \mathrm{~b} \Leftrightarrow \mathrm{a} \subset \mathrm{~b}=\mathrm{a}
$$

- A complementary lattice contains two elements n and e with each element a an complementary element a'

$$
\begin{array}{ll}
a \cap a^{\prime}=n & a \cap n=n \\
a \cap e=a & a \cup a^{\prime}=e \\
a \cup e=e & a \cup n=a
\end{array}
$$

Orthocomplemented lattice

- Contains with each element a an element a " such that:

$$
\begin{aligned}
& a \cup a^{\prime \prime}=e \\
& a \cap a^{\prime \prime}=n \\
& \left(a^{\prime \prime}\right) \prime=a \\
& a \subset b \Leftrightarrow b^{\prime \prime} \subset a^{\prime \prime}
\end{aligned}
$$

Distributive lattice

$$
\begin{aligned}
& a \cap(b \cup c) \\
& =(a \cap b) \cup(a \cap c) \\
& a \cup(b \cap c) \\
& =(a \cup b) \cap(a \cup c)
\end{aligned}
$$

Modular lattice

$$
(a \cap b) \cup(a \cap c)=a \cap(b \cup(a \cap c))
$$

Classical logic is an orthocomplemented modular lattice

Weak modular lattice

- There exists an element d such that

$$
\begin{aligned}
& a \subset c \Leftrightarrow(a \cup b) \cap c \\
& \quad=a \cup(b \cap c) \cup(d \cap c)
\end{aligned}
$$

- where d obeys:

$$
\begin{aligned}
& (a \cup b) \cap d=d \\
& a \cap d=n \quad b \cap d=n \\
& {[(a \subset g) \text { and }(b \subset g) \Leftrightarrow d \subset g}
\end{aligned}
$$

Atoms

- In an atomic lattice

$$
\begin{aligned}
& \exists_{p \in L} \forall_{x \in L}\{x \subset p \Rightarrow x=n\} \\
& \forall_{a \in L} \forall_{x \in L}\{(a<x<a \cap p) \\
& \quad \Rightarrow(x=a \text { or } x=a \cap p)\}
\end{aligned}
$$

p is an atom

Logics

- Classical logic has the structure of an orthocomplemented distributive modular and atomic lattice.
- Quantum logic has the structure of an orthocomplented weakly modular and atomic lattice.
- Also called orthomodular lattice.

Hilbert space

-The set of closed subspaces of an infinite dimensional separable Hilbert space forms an orthomodular lattice

- Is lattice isomorphic to quantum logic

Hilbert logic

- Add linear propositions
- Linear combinations of atomic propositions
- Add relational coupling measure
- Equivalent to inner product of Hilbert space
- Close subsets with respect to realational coupling measure
- Propositions \Leftrightarrow subspaces
- Linear propositions \Leftrightarrow Hilbert vectors

Superposition principle

Linear combinations of linear propositions are again linear propositions that belong to the same Hilbert logic system

Isomorphism

-Lattice isomorhic
-Propositions \Leftrightarrow closed subspaces
-Topological isomorphic
-Linear atoms \Leftrightarrow Hilbert base vectors

The Higgs mechanism

The HBM has its own solution

http://www.youtube.com/watch?v=JqNg819PiZY

Higgs mechanism

Complex number based

Thus, $e^{i \theta}$ is no symmetry!

Higgs mechanism \Leftrightarrow HBM

$$
\nabla \psi^{x}=m \psi^{y}
$$

Coupling equation

Mexican hat

 fields graphParticle oscillates between fields at lowest energy

Gauge transformation

Covariant derivative

$$
\begin{aligned}
D_{\mu} \psi & =\partial_{\mu} \psi-i A_{\mu} \psi \\
& =\left(\partial_{\mu} \theta+{ }^{`}\right) i \rho e^{i \theta} \\
& A_{\mu}^{\prime}=\partial_{\mu} \theta+A_{\mu}
\end{aligned}
$$

The new Lagrangian is

$$
\mathcal{L}=D_{\mu} \psi D_{\mu} \psi^{*}=f^{2}\left(\partial_{\mu} \theta+A_{\mu}\right)^{2}=f^{2} A_{\mu}^{\prime 2}
$$

θ is replaced by a new field A_{μ}^{\prime} The factor f represents mass

