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Abstract

According to Newton’s third law, in a collision between two isolated particles ‘action
equals reaction’. However, in classical electrodynamics, this law is violated. In general, in
a collision between two isolated charged particles, the momentum of the particles is not
conserved. Typically, it is necessary to combine field momentum with particle momentum
in order to ‘balance the scales’. A paradox arises from the fact that, generally, particle
momentum is conserved in the center of mass frame, but not in the lab frame. Here,
we offer a resolution to this paradox in which the third law remains valid for collisions
between charged particles, in all situations and in all frames, without the need to invoke
the momentum of the field. This article is a revision of my previous article by the same
title.

1 Introduction

In Newton’s third law, the momentum of an isolated system of ‘particles’ is conserved [1]. In
other words, action equals reaction. Unfortunately, in classical electrodynamics, this is not the
case. The momentum of an isolated system of ‘charged’ particles is not conserved, thus, action
does not equal reaction, except in limited cases.

The usual remedy for this problem in classical electrodynamics is to add field momentum to
particle momentum in order to ‘balance the scales’. The solution instead, in my opinion, is not to
add field momentum to particle momentum, but rather to modify the equations of motion - the
Lorentz force equations. The result of this modification is that the equations of motion become
consistent with Newton’s third law for the particles, themselves, independent of the fields.

I will evaluate the forces on two isolated charged particles moving at constant (non-relativistic)
velocities.1 In the classical model, these forces are not always equal and opposite. I intend to
show that this inequality of forces leads to a paradox, to which I offer a resolution.

In this article, the potential four-vector (A,ϕ) will be substituted for the electric and magnetic
field three-vectors E and B used in my previous article “Action-Reaction Paradox Resolution”
[3]. SI units will be used throughout this article.

1My complete relativistic, four-dimensional force equations, can be seen in the section “The Force Density
Four-vector” in [2].

1



2 The Paradox

Let us evaluate the forces on two isolated identical ‘point’ charges q and q′ considered, for the
purposes of this discussion, to be moving with constant velocities v and v′, respectively. The
Lorentz force F on q due to q′ is

F = q(E+ v ×B) (1)

where E and B are the conventional electric and magnetic field three-vectors at the position of
q due to q′ [4].

The Lorentz force F′ on q′ due to q is

F′ = q′(E′ + v′ ×B′) (2)

where E′ and B′ are the conventional electric and magnetic field three-vectors at the position of
q′ due to q.

The electric forces Fe = qE and F′
e = q′E′ on the particles are always equal in magnitude

and opposite in direction, but the magnetic forces

Fm = qv ×B (3)

and
F′

m = q′v ×B′ (4)

are not, in general, equal and opposite. In fact, for every case except the cases, one or both
particles at rest, or particles on parallel paths, the magnetic forces are not equal and opposite.
Therefore, the total forces on the particles in the lab frame are not, in general, equal and opposite.

However, in the center of mass (cm) frame, the total forces on the particles are equal and
opposite at all times, due to symmetry. Therefore, we have the paradox that the forces on the
particles are equal and opposite in the cm frame, but not in the lab frame.

3 The Resolution

I would like to offer a resolution to this paradox. Consider the additional force,

Fa = −qv
(
∇ ·A− ∂ϕ

c2∂t

)
(5)

on q due to q′, where ϕ and A are the conventional electric potential and potential three-vector,
respectively, at the position of q due to q′, c is the speed of light and A = v′ϕ/c2.

The additional force on q′ due to q is2

F′
a = −q′v′

(
∇ ·A′ − ∂ϕ′

c2∂t

)
(6)

2These additional forces are not ad hoc additions. They are due to the time component of my electric field
four-vector which is part of my force density equations in [2] (these forces are not referred to as Fa and F′

a in my
article).
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where ϕ′ and A′ are the conventional electric potential and potential three-vector, respectively,
at the position of q′ due to q, and A′ = vϕ′/c2.

Therefore, our new law for the force on q is

F = q

[
E+ v ×B− v

(
∇ ·A− ∂ϕ

c2∂t

)]
(7)

and for the force on q′

F′ = q′
[
E′ + v′ ×B′ − v′

(
∇ ·A′ − ∂ϕ′

c2∂t

)]
(8)

For consistency, we will write the electric and magnetic fields in terms of the potential four-vectors
(A,ϕ) and (A′,ϕ′) as

E = −∇ϕ− ∂A

∂t
, B = ∇×A (9)

E′ = −∇ϕ′ − ∂A′

∂t
, B′ = ∇×A′ (10)

Inserting (9) and (10) into (7) and (8), respectively, we get

F = q

[
−∇ϕ− ∂A

∂t
+ v × (∇×A)− v

(
∇ ·A− ∂ϕ

c2∂t

)]
(11)

and

F′ = q′
[
−∇ϕ′ − ∂A′

∂t
+ v′ × (∇×A′)− v′

(
∇ ·A′ − ∂ϕ′

c2∂t

)]
(12)

Then, using the vector identity

v × (∇×A) = ∇(v ·A)− (v · ∇)A (13)

we can write (11) as

F = q

[
−∇ϕ− ∂A

∂t
+∇(v ·A)− (v · ∇)A− v(∇ ·A) + v

∂ϕ

c2∂t

]
(14)

Making the following substitutions,3 in (14)

q = q′

∂ϕ

∂t
=
∂ϕ′

∂t
∇ϕ = −∇ϕ′

∂A

∂t
= v′ ∂ϕ

′

c2∂t
. . . (A.1)

∇(v ·A) = −∇(v′ ·A′) . . . (A.2)

(v · ∇)A = −v′(∇ ·A′) . . . (A.3)

v(∇ ·A) = −(v′ · ∇)A′ . . . (A.4)

v
∂ϕ

c2∂t
=
∂A′

∂t
. . . (A.5)

3Please, click on the blue links to the right of the equations for their derivations in the Appendix.
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we get

F = −q′
[
−∇ϕ′ − ∂A′

∂t
+∇(v′ ·A′)− (v′ · ∇)A′ − v′(∇ ·A′) + v′ ∂ϕ

′

c2∂t

]
(15)

From the vector identity

v′ × (∇×A′) = ∇(v′ ·A′)− (v′ · ∇)A′ (16)

we can convert (15) into

F = −q′
[
−∇ϕ′ − ∂A′

∂t
+ v′ × (∇×A′)− v′

(
∇ ·A′ − ∂ϕ′

c2∂t

)]
(17)

Now, notice that the right-hand side of (17) is the negative of the right-hand side of (12), so that
we can write

F = −F′ (18)

Therefore, action equals reaction for the spatial part of the force. This is the same result we
got in [3]. Thus, classical electrodynamics can be made consistent with Newton’s third law for
interactions between the particles, themselves, independent of the fields.

The result (18) takes into consideration only the spatial components of the force. I would,
now, like to consider the time component of the force.

The new law for the time component of the force on q due to q′ is

Ft = q

[
1

c
v · E+ c

(
∇ ·A− ∂ϕ

c2∂t

)]
(19)

Substituting from (9) into (19), we have

Ft = q

[
1

c
v ·

(
−∇ϕ− ∂A

∂t

)
+ c

(
∇ ·A− ∂ϕ

c2∂t

)]
(20)

or

Ft = q

[
−1

c
v · ∇ϕ− 1

c
v · ∂A

∂t
+ c∇ ·A− ∂ϕ

c ∂t

]
(21)

The time component of the force on q′ due to q is, therefore,

F ′
t = q′

[
−1

c
v′ · ∇ϕ′ − 1

c
v′ · ∂A

′

∂t
+ c∇ ·A′ − ∂ϕ′

c ∂t

]
(22)

We now make the substitutions,4 below into (21)

q = q′

1

c
v · ∇ϕ = −c∇ ·A′ . . . (A.6)

v · ∂A
∂t

= v′ · ∂A
′

∂t
. . . (A.7)

c∇ ·A = −1

c
v′ · ∇ϕ′ . . . (A.8)

∂ϕ

c ∂t
=
∂ϕ′

c ∂t
4Again, please, click on the blue links to the right of the equations for their derivations in the Appendix.
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to get

Ft = q′
[
−1

c
v′ · ∇ϕ′ − 1

c
v′ · ∂A

′

∂t
+ c∇ ·A′ − ∂ϕ′

c ∂t

]
(23)

Now comparing (22) and (23), we see that

Ft = F ′
t (24)

which is, again, the same result we got in [3]. The time component of the force Ft on q and the
time component of the force F ′

t on q
′ are equal, but not opposite, for two isolated particles.

4 Final Notes

There are additional terms in the force equations in [2] that have been omitted in this discussion.
Nevertheless, the inclusion of these terms would still leave F = −F′ and Ft = F ′

t .
It would be interesting to conjecture, at this point, that the indication/reason that time and

space are different might, in some way, be due to the difference in the results (18) and (24).
Equations (14) and (21) are gauge invariant under the substitution of A′ = A+∇ψ and

ϕ′ = ϕ− ∂ψ/∂t for A and ϕ, respectively, where ψ is some scalar field [5], providing that
∇2ψ + ∂2ψ/∂t2 = 0. The vector potential A′ and the scalar potential ϕ′, here, should not be
confused with the vector and scalar potentials at the position of q′ due to q discussed earlier.
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A Appendix

These derivations are done recalling that A = v′ϕ/c2 and A′ = vϕ′/c2, and that v and v′ are
assumed to be constant, thus their derivatives vanish.

A.1 Derivation of ∂A/∂t = v′(∂ϕ′/c2∂t)

∂A

∂t
=
∂(v′ϕ)

c2∂t

= v′ ∂ϕ

c2∂t

= v′ ∂ϕ
′

c2∂t

A.2 Derivation of ∇(v ·A) = −∇(v′ ·A′)

The x-component of ∇(v ·A) is

[∇(v ·A)]x =
∂

∂x
(vxAx + vyAy + vzAz)

= vx
∂Ax

∂x
+ vy

∂Ay

∂x
+ vz

∂Az

∂x

=
1

c2

[
vx
∂(v′xϕ)

∂x
+ vy

∂(v′yϕ)

∂x
+ vz

∂(v′zϕ)

∂x

]
=

1

c2

(
vxv

′
x

∂ϕ

∂x
+ vyv

′
y

∂ϕ

∂x
+ vzv

′
z

∂ϕ

∂x

)
=

1

c2

(
−vxv′x

∂ϕ′

∂x
− vyv

′
y

∂ϕ′

∂x
− vzv

′
z

∂ϕ′

∂x

)
= − 1

c2

[
v′x
∂(vxϕ

′)

∂x
+ v′y

∂(vyϕ
′)

∂x
+ v′z

∂(vzϕ
′)

∂x

]
= −

(
v′x
∂A′

x

∂x
+ v′y

∂A′
y

∂x
+ v′z

∂A′
z

∂x

)
= − ∂

∂x

(
v′xA

′
x + v′yA

′
y + v′zA

′
z

)
= − [∇(v′ ·A′)]x ,

therefore,

∇(v ·A) = −∇(v′ ·A′)
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A.3 Derivation of (v · ∇)A = −v′(∇ ·A′)

The x-component of (v · ∇)A is

[(v · ∇)A]x =

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
Ax

= vx
∂Ax

∂x
+ vy

∂Ax

∂y
+ vz

∂Ax

∂z

=
1

c2

[
vx
∂(v′xϕ)

∂x
+ vy

∂(v′xϕ)

∂y
+ vz

∂(v′xϕ)

∂z

]
=

1

c2

(
vxv

′
x

∂ϕ

∂x
+ vyv

′
x

∂ϕ

∂y
+ vzv

′
x

∂ϕ

∂z

)
=

1

c2

(
−vxv′x

∂ϕ′

∂x
− vyv

′
x

∂ϕ′

∂y
− vzv

′
x

∂ϕ′

∂z

)
= − 1

c2

[
v′x
∂(vxϕ

′)

∂x
+ v′x

∂(vyϕ
′)

∂y
+ v′x

∂(vzϕ
′)

∂z

]
= −

(
v′x
∂A′

x

∂x
+ v′x

∂A′
y

∂y
+ v′x

∂A′
z

∂z

)
= −v′x

(
∂A′

x

∂x
+ v′x

∂A′
y

∂y
+ v′x

∂A′
z

∂z

)
= − [v′ (∇ ·A′)]x ,

therefore,

(v · ∇)A = −v′ (∇ ·A′)
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A.4 Derivation of v(∇ ·A) = −(v′ · ∇)A′

The x-component of v(∇ ·A) is

[v(∇ ·A)]x = vx

(
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

)
= vx

∂Ax

∂x
+ vx

∂Ay

∂y
+ vx

∂Az

∂z

=
1

c2

[
vx
∂(v′xϕ)

∂x
+ vx

∂(v′yϕ)

∂y
+ vx

∂(v′zϕ)

∂z

]
=

1

c2

(
vxv

′
x

∂ϕ

∂x
+ vxv

′
y

∂ϕ

∂y
+ vxv

′
z

∂ϕ

∂z

)
=

1

c2

(
−vxv′x

∂ϕ′

∂x
− vxv

′
y

∂ϕ′

∂y
− vxv

′
z

∂ϕ′

∂z

)
= − 1

c2

[
v′x
∂(vxϕ

′)

∂x
+ v′y

∂(vxϕ
′)

∂y
+ v′z

∂(vxϕ
′)

∂z

]
= −

(
v′x
∂A′

x

∂x
+ v′y

∂A′
x

∂y
+ v′z

∂A′
x

∂z

)
= −

(
v′x

∂

∂x
+ v′y

∂

∂y
+ v′z

∂

∂z

)
A′

x

= − [(v′ · ∇)A′]x ,

therefore,

v(∇ ·A) = − (v′ · ∇)A′

A.5 Derivation of v(∂ϕ/c2∂t) = ∂A′/∂t

v
∂ϕ

c2∂t
= v

∂ϕ′

c2∂t

=
∂(vϕ′)

c2∂t

=
∂A′

∂t
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A.6 Derivation of (1/c)v · ∇ϕ = −c∇ ·A′

1

c
v · ∇ϕ =

1

c

(
vx
∂ϕ

∂x
+ vy

∂ϕ

∂y
+ vz

∂ϕ

∂z

)
=

1

c

(
−vx

∂ϕ′

∂x
− vy

∂ϕ′

∂y
− vz

∂ϕ′

∂z

)
= −1

c

[
∂(vxϕ

′)

∂x
+
∂(vyϕ

′)

∂y
+
∂(vzϕ

′)

∂z

]
= −c

(
∂A′

x

∂x
+
∂A′

y

∂y
+
∂A′

z

∂z

)
= −c∇ ·A′

A.7 Derivation of v · ∂A/∂t = v′ · ∂A′/∂t

v · ∂A
∂t

= vx
∂Ax

∂t
+ vy

∂Ay

∂t
+ vz

∂Az

∂t

=
1

c2

[
vx
∂(v′xϕ)

∂t
+ vy

∂(v′yϕ)

∂t
+ vz

∂(v′zϕ)

∂t

]
=

1

c2

(
vxv

′
x

∂ϕ

∂t
+ vyv

′
y

∂ϕ

∂t
+ vzv

′
z

∂ϕ

∂t

)
=

1

c2

(
vxv

′
x

∂ϕ′

∂t
+ vyv

′
y

∂ϕ′

∂t
+ vzv

′
z

∂ϕ′

∂t

)
=

1

c2

[
v′x
∂(vxϕ

′)

∂t
+ v′y

∂(vyϕ
′)

∂t
+ v′z

∂(vzϕ
′)

∂t

]
= v′x

∂A′
x

∂t
+ v′y

∂A′
y

∂t
+ v′z

∂A′
z

∂t

= v′ · ∂A
′

∂t
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A.8 Derivation of c∇ ·A = −(1/c)v′ · ∇ϕ′

c∇ ·A = c

(
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

)
=

1

c

[
∂(v′xϕ)

∂x
+
∂(v′yϕ)

∂y
+
∂(v′zϕ)

∂z

]
=

1

c

(
v′x
∂ϕ

∂x
+ v′y

∂ϕ

∂y
+ v′z

∂ϕ

∂z

)
=

1

c

(
−v′x

∂ϕ′

∂x
− v′y

∂ϕ′

∂y
− v′z

∂ϕ′

∂z

)
= −1

c

(
v′x
∂ϕ′

∂x
+ v′y

∂ϕ′

∂y
+ v′z

∂ϕ′

∂z

)
= −1

c
v′ · ∇ϕ′
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