Quasi-periodic solution of a spiral type for photogravitational restricted 3-bodies problem

Sergey V. Ershkov,
Institute for Time Nature Explorations, M.V. Lomonosov's Moscow State University, Leninskie gory, 1-12, Moscow 119991, Russia e-mail: sergej-ershkov@yandex.ru

Abstract

Here is presented a new type of exact solutions for photogravitational restricted 3-bodies problem (a case of spiral motion).

A key point is that we obtain the appropriate specific case of spiral motions from the Jacobian-type integral of motion for photogravitational restricted 3-bodies problem (when orbit of small 3-rd body is assumed to be like a spiral).

Besides, we should especially note that there is a proper restriction to the type of spiral orbital motion of small 3-rd body, which could be possible for choosing as the exact solution of equations for photogravitational restricted 3-bodies problem.

The main result, which should be outlined, is that in a case of quasi-planar orbital motion (of the small 3-rd body) the asymptotic expression for component z of motion is proved to be given by the proper elliptical integral.

Key Words: photogravitational restricted three body problem, Jacobian-type integral of motion, spiral motion

1. Introduction.

In this contribution, we present a new type of exact solutions for photogravitational restricted 3-bodies problem [1-3], the case of spiral motions.

According to the Bruns theorem [4], there is no other invariants except well-known 10 integrals for 3-bodies problem (including integral of energy, momentum, etc.). But in the case of restricted 3-bodies problem, there is no other invariants except only one, Jacobian-type integral of motion [5-6].

The main idea is to obtain from the Jacobian-type integral of motion the appropriate specific case of spiral motion for photogravitational restricted 3-bodies problem (when orbit of small 3-rd body is assumed to be like a spiral); besides, such a case of spiral motion should be adopted by the structure of the Jacobian-type integral of motion.

In addition we should emphasize the appropriate astrophysical application of the constructed (exact) solutions of a spiral motion: for example, we could consider the Sun-Jupiter system as primaries and assume that only the larger primary (Sun) radiates. Besides, we could consider a small objects such as meteoroids or small asteroids (about 10 cm to 10 km in diameter) as the small 3-rd body for such a case.

2. Equations of motion.

Let us consider the system of ODE for photogravitational restricted 3-bodies problem, at given initial conditions [2].

We consider three bodies of masses m_{1}, m_{2} and m such that $m_{1}>m_{2}$ and m is an infinitesimal mass. The two primaries m_{1} and m_{2} are sources of radiation; q_{1} and q_{2} are factors of the radiation effects of the two primaries respectively, $\left\{q_{1}, q_{2}\right\} \in(-\infty, 1]$.

We assume that m_{2} is an oblate spheroid. The effect of oblateness [7-8] is denoted by the factor A_{2}.

Let $r_{i}(i=1,2)$ be the distances between the centre of mass of the bodies m_{1} and m_{2} and the centre of mass of body m. The unit of mass is chosen so that the sum of the masses of finite bodies is equal to 1 .

We suppose that $m_{1}=1-\mu$ and $m_{2}=\mu$, where μ is the ratio of the mass of the smaller primary to the total mass of the primaries and $0 \leq \mu \leq 0,5$. The unit of distance is taken as the distance between the primaries. The unit of time is chosen so that the gravitational constant is equal to 1 .

The three dimensional restricted 3-bodies problem, with an oblate primary m_{2} and both primaries radiating, could be presented in barycentric rotating co-ordinate system by the equations of motion below [7-8]:

$$
\begin{gather*}
\ddot{x}-2 n \dot{y}=\frac{\partial \Omega}{\partial x}, \\
\ddot{y}+2 n \dot{x}=\frac{\partial \Omega}{\partial y}, \tag{2.1}\\
\ddot{z} \quad=\frac{\partial \Omega}{\partial z}, \\
\Omega=\frac{n^{2}}{2}\left(x^{2}+y^{2}\right)+\frac{q_{1}(1-\mu)}{r_{1}}+\frac{q_{2} \mu}{r_{2}}\left[1+\frac{A_{2}}{2 r_{2}^{2}} \cdot\left(1-\frac{3 z^{2}}{r_{2}^{2}}\right)\right], \tag{2.2}
\end{gather*}
$$

- where

$$
n^{2}=1+\frac{3}{2} A_{2}
$$

- is the angular velocity of the rotating coordinate system and A_{2} - is the oblateness coefficient. Here

$$
A_{2}=\frac{A E^{2}-A P^{2}}{5 R^{2}}
$$

- where $A E$ is the equatorial radius, $A P$ is the polar radius and R is the distance between primaries. Besides, we should note that

$$
\begin{aligned}
& r_{1}^{2}=(x+\mu)^{2}+y^{2}+z^{2} \\
& r_{2}^{2}=(x-1+\mu)^{2}+y^{2}+z^{2}
\end{aligned}
$$

- are the distances of infinitesimal mass from the primaries.

We neglect the relativistic Poynting-Robertson effect [9-10] which may be treated as a perturbation for cosmic dust or for small particles (less than 1 cm in diameter), we neglect the Yarkovsky effect of non-gravitational nature [11-13], as well as we neglect the effect of variable masses of 3-bodies [14-15].

The possible ways of simplifying of equations (2.1):

- if we assume effect of oblateness is zero, $A_{2}=0(\Rightarrow n=1)$, it means m_{2} is non-oblate spheroid (we will consider only such a case below);
- if we assume $q_{1}=q_{2}=1$, it means a case of restricted 3-bodies problem.

3. Exact solution (a case of spiral motion).

Regarding the orbit of small 3-rd body, let us assume such an orbit to be presented like a spiral (Pic.1).

Pic.1. Type of spiral motion.

Besides, let us remind that we could obtain from the equations of system (2.1) a Jacobian-type integral of motion [5-6]:

$$
\begin{equation*}
(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2}=2 \Omega(x, y, z)+C \tag{3.1}
\end{equation*}
$$

- where C is so-called Jacobian constant.

As per assumption above, it means that components of solution $\left\{x_{i}\right\}=\{x(t), y(t), z(t)\}$ ($i=1,2,3$) should be presented as below:

$$
x=\xi(t) \cdot \cos (w \cdot t), \quad y=\xi(t) \cdot \sin (w \cdot t), \quad z=z(t),
$$

- where the angular velocity is chosen $w=1$. For example:

1) If $\xi(t)=a \cdot t+c, z(t)=b \cdot t$ - we should obtain the spiral of screw line type,
2) If $\xi(t)=a \cdot \exp (b \cdot t), z(t)=c \cdot t$ - we should obtain the $3-D$ logarithmic spiral, - here $\{a, b, c\}$ are supposed to be the arbitrary positive real constants.

Thus if we substitute the representation above for the components of solution $\left\{x_{i}\right\}=$ $\{x(t), y(t), z(t)\}$ into the Equation (3.1), we should obtain the proper equation below

$$
\begin{gather*}
(\dot{\xi}(t) \cdot \cos t-\xi(t) \cdot \sin t)^{2}+(\dot{\xi}(t) \cdot \sin t+\xi(t) \cdot \cos t)^{2}+(\dot{z})^{2}=2 \Omega(x, y, z)+C \\
\Rightarrow \quad \dot{\xi}^{2}(t)+\xi^{2}(t)+(\dot{z})^{2}=2 \Omega(x, y, z)+C \tag{3.2}
\end{gather*}
$$

- where the expression for $\Omega(t)$ in (2.2) should be simplified in the case of nonoblateness $A_{2}=0(n=1)$:

$$
\begin{gather*}
\Omega(t)=\frac{\xi^{2}(t)}{2}+\frac{q_{1}(1-\mu)}{r_{1}}+\frac{q_{2} \mu}{r_{2}}, \tag{3.3}\\
r_{1}^{2}=(\xi(t) \cdot \cos t+\mu)^{2}+(\xi(t) \cdot \sin t)^{2}+z(t)^{2}, \\
r_{2}^{2}=(\xi(t) \cdot \cos t-1+\mu)^{2}+(\xi(t) \cdot \sin t)^{2}+z(t)^{2} .
\end{gather*}
$$

So, taking into consideration the expression (3.3) for $\Omega(t)$, we obtain from (3.2)

$$
\begin{align*}
& \dot{\xi}^{2}(t)+(\dot{z})^{2}=\frac{2 q_{1}(1-\mu)}{r_{1}}+\frac{2 q_{2} \mu}{r_{2}}+C \tag{3.4}\\
& r_{1}^{2}=(\xi(t) \cdot \cos t+\mu)^{2}+(\xi(t) \cdot \sin t)^{2}+z(t)^{2} \\
& r_{2}^{2}=(\xi(t) \cdot \cos t-1+\mu)^{2}+(\xi(t) \cdot \sin t)^{2}+z(t)^{2}
\end{align*}
$$

Besides, we should note from (3.4) that the proper restriction below should be valid:

$$
\frac{2 q_{1}(1-\mu)}{r_{1}}+\frac{2 q_{2} \mu}{r_{2}}+C \geq 0
$$

[^0]- 1) first, we assume $\mathrm{z}(t)$ to be given as a proper function of parameter t, then we should obtain a solution of ODE of the 1 -st kind for $\xi(t)$;
-2) or the 2 -nd, we assume $\xi(t)$ to be given as a proper function of parameter t, then we should obtain a solution of ODE of the 1 -st kind for $\mathrm{z}(t)$.

For example, if we choose the 2-nd way of above, we should obtain from (3.4):

$$
\begin{align*}
& (\dot{z})^{2}=\frac{2 q_{1}(1-\mu)}{\sqrt{z(t)^{2}+{r_{1}^{2}}^{2}(x, y)}}+\frac{2 q_{2} \mu}{\sqrt{z(t)^{2}+r_{2}^{2}(x, y)}}+f \tag{3.5}\\
& r_{1}^{2}(x, y)=(\xi(t) \cdot \cos t+\mu)^{2}+(\xi(t) \cdot \sin t)^{2}, \\
& r_{2}^{2}(x, y)=(\xi(t) \cdot \cos t-1+\mu)^{2}+(\xi(t) \cdot \sin t)^{2}, \\
& f=C-\dot{\xi}^{2}(t) .
\end{align*}
$$

4. Conclusion.

We have obtained a new type of exact solutions for photogravitational restricted 3bodies problem [1-3] (the case of spiral motion).

According to the Bruns theorem [4], there is no other invariants except well-known 10 integrals for 3-bodies problem (including integral of energy, momentum, etc.). But in the case of restricted 3-bodies problem, there is no other invariants except only one, Jacobian-type integral of motion [5-6].

A key point is that we obtain the appropriate specific case of spiral motion from the Jacobian-type integral for photogravitational restricted 3-bodies problem (when orbit of small 3-rd body is assumed to be like a spiral). Besides, we should especially note that there is a proper restriction to the type of spiral orbital motion of small 3-rd body, which could be possible for choosing as the exact solution of equations for photogravitational restricted 3-bodies problem.

Let us demonstrate the proper asymptotic simplifications of the considered solutions; Eq. (3.5) could be simplified if we consider a quasi-planar case of orbital motion:

$$
\begin{align*}
& (\dot{z})^{2}=\frac{2 q_{1}(1-\mu)}{r_{1}(x, y) \cdot \sqrt{1+\frac{z(t)^{2}}{r_{1}^{2}(x, y)}}}+\frac{2 q_{2} \mu}{r_{2}(x, y) \cdot \sqrt{1+\frac{z(t)^{2}}{r_{2}^{2}(x, y)}}}+f \quad\left\{\frac{z(t)}{r_{1}} \rightarrow 0, \frac{z(t)}{r_{2}} \rightarrow 0\right\} \Rightarrow \\
& (\dot{z})^{2} \cong \frac{2 q_{1}(1-\mu)}{r_{1}(x, y)} \cdot\left(1-\frac{z(t)^{2}}{2 r_{1}^{2}(x, y)}\right)+\frac{2 q_{2} \mu}{r_{2}(x, y)} \cdot\left(1-\frac{z(t)^{2}}{2 r_{2}^{2}(x, y)}\right)+C-\dot{\xi}^{2}(t), \\
& \sqrt{-\left(\frac{q_{1}(1-\mu)}{r_{1}^{3}(x, y)}+\frac{q_{2} \mu}{r_{2}^{3}(x, y)}\right) \cdot z(t)^{2}+\left(\frac{2 q_{1}(1-\mu)}{r_{1}(x, y)}+\frac{2 q_{2} \mu}{r_{2}(x, y)}+C-\dot{\xi}^{2}(t)\right)} \tag{3.6}
\end{align*} d t, l \text { (3.6) }
$$

- where the left side of Equation (3.6) could be transformed to the proper elliptical integral [16] in regard to z.

Besides, the appropriate restrictions of meanings of variables should be valid for all meanings of parameter $t \geq 0$ as below:

$$
-\left(\frac{q_{1}(1-\mu)}{r_{1}^{3}(x, y)}+\frac{q_{2} \mu}{r_{2}^{3}(x, y)}\right) \cdot z(t)^{2}+\left(\frac{2 q_{1}(1-\mu)}{r_{1}(x, y)}+\frac{2 q_{2} \mu}{r_{2}(x, y)}+C-\dot{\xi}^{2}(t)\right) \geq 0 .
$$

5. Discussions.

We obtain the appropriate specific case of a spiral motion for photogravitational restricted 3-bodies problem from the Jacobian-type integral of motion (when orbit of small 3-rd body is assumed to be like a spiral).

The main result, which should be outlined, is that in a case of quasi-planar orbital motion (of the small 3-rd body) the asymptotic expression for component z of motion is proved to be given by the proper elliptical integral. But the elliptical integral is known to be a generalization of the class of inverse periodic functions.

Thus, by the proper obtaining of re-inverse dependence of a solution from timeparameter we could present the expression of $z(t)$ as a set of periodic cycles. So, the meaning of component $z(t)$ is proved to be limited in the proper range of values.

Acknowledgements

I am thankful to CNews Russia project (Science \& Technology Forum, branches "Gravitation") - for valuable discussions in preparing of this manuscript.

Especially I am thankful to Dr. P.V.Fedotov, Prof. L.Vladimirov, Dr.A.Kulikov for valuable suggestions in preliminary discussions of this manuscript.

References:

[1] Radzievskii V.V. (1950). The restricted problem of three bodies taking account of light pressure. Akad. Nauk. USSR, Astron,Journal Vol. 27, p. 250.
[2] Shankaran, Sharma J.P. and Ishwar B. (2011). Equilibrium points in the generalized photogravitational non-planar restricted three body problem. International Journal of Engineering, Science and Technology, Vol. 3, No. 2, 2011, pp. 63-67.
[3] Ershkov S.V. (2012). Yarkovsky Effect in Modified Photogravitational 3-Bodies Problem. IJPAM, vol. 78, No. 3 (2012).
[4] Bruns H. (1887). Ueber die Integrale der Vielkoerper-Problems. Acta math. Bd. 11, p. 25-96.
[5] Szebehely V. (1967). Theory of Orbits. The Restricted Problem of Three Bodies. Yale University, New Haven, Connecticut. Academic Press New-York and London.
[6] Duboshin G.N. (1968). Nebesnaja mehanika. Osnovnye zadachi i metody. Moscow: "Nauka" (ru) (handbook for Celestial Mechanics).
[7] Douskos C.N. \& Markellos V.V. (2006). Out-of-plane equilibrium points in the restricted three body problem with oblateness. $A \& A$, Vol. 446, pp.357-360.
[8] Shankaran, Sharma J.P. and Ishwar B. (2011). Out-of-plane equilibrium points and stability in the generalised photogravitational restricted three body problem. Astrophys Space Sci, Vol. 332, No. 1, pp. 115-119.
[9] Chernikov Y.A. (1970). The Photogravitational Restricted Three-Body Problem. Soviet Astronomy, Vol. 14, p. 176.
[10] Kushvah B.S., Sharma J.P. and Ishwar B. (2007). Nonlinear stability in the generalised photogravitational restricted three body problem with PoyntingRobertson drag. Astrophys Space Sci, Vol. 312, No. 3-4, pp. 279-293.
[11] Radzievskii V.V. (1954). A mechanism for the disintegration of asteroids and meteorites. Doklady Akademii Nauk SSSR 97, pp. 49-52.
[12] Rubincam D.P. (2000). Radiative spin-up and spin-down of small asteroids. Icarus, 148, pp.2-11.
[13] Ershkov S.V. (2012). The Yarkovsky effect in generalized photogravitational 3body problem. Planetary and Space Science, Vol. 73 (1), pp. 221-223.
[14] Singh J., Leke O. (2010). Stability of the photogravitational restricted three-body problem with variable masses. Astrophys Space Sci, Vol. 326 (2), pp. 305-314.
[15] Varvoglis H., Hadjidemetriou J.D. (2012). Comment on the paper "On the triangular libration points in photogravitational restricted three-body problem with variable mass" by Zhang, M.J., et al. Astrophys Space Sci, Vol. 339 (2), pp. 207-210.
[16] Lawden D. (1989) Elliptic Functions and Applications. Springer-Verlag. See also: http://mathworld.wolfram.com/EllipticIntegral.html

[^0]: - here $\left\{q_{1}, q_{2}\right\} \in(-\infty, 1]$. There are two possibilities to solve the equation (3.4):

