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Abstract: Here is presented a new type of exact solution for photogravitational

restricted 3-bodies problem (a case of spiral motion).

A key point is that from the Jacobian-type integral we obtain the appropriate specific
case of spiral motion for photogravitational restricted 3-bodies problem (when orbit of

small 3-rd body is assumed to be like a spiral).

Besides, we should especially note that there is no analogue of Jacobian-type integral
of motion in the case of photogravitational restricted 3-bodies problem if we take into

consideration even a small Yarkovsky effect.
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1. Introduction.

Here is presented a new type of exact solution for photogravitational restricted 3-

bodies problem [1-3] (the case of spiral motion).

According to the Bruns theorem [4], there is no other invariants except well-known 10
integrals for 3-bodies problem (including integral of energy, momentum, etc.). But in the
case of restricted 3-bodies problem, there is no other invariants except only one,

Jacobian-type integral of motion [5-6].

A key point is that from the Jacobian-type integral we obtain the appropriate specific
case of spiral motion for photogravitational restricted 3-bodies problem (when orbit of
small 3-rd body is assumed to be like a spiral). Besides, we should especially note that
there is no analogue of Jacobian-type integral of motion in the case of

photogravitational restricted 3-bodies problem if we take into consideration even a

small Yarkovsky effect [3].

The Yarkovsky effect is a force acting on a rotating body in space caused by the
anisotropic emission of thermal photons, which carry momentum [7-8]. It is usually
considered in relation to meteoroids or small asteroids (about 10 cm to 10 km in
diameter), as its influence is most significant for these bodies. Such a force is
produced by the way an asteroid absorbs energy from the sun and re-radiates it into

space as heat by anisotropic way.

Besides, Yarkovsky effect is not predictable (it could be only observed & measured by
astronomical methods); the main reason is unpredictable character of the rotating of

small bodies [8], even in the case when there is no any collision between them.



2. Equations of motion.

Let us consider the system of ODE for photogravitational restricted 3-bodies problem

under the influence of Yarkovsky effect, at given initial conditions [3].

We consider three bodies of masses m;, m: and m such that m, > m- and m is an
infinitesimal mass. The two primaries m; and m- are sources of radiation; ¢:and g- are

factors of the radiation effects of the two primaries respectively [2], {g1, -} € (-, 1].

We assume that m- is an oblate spheroid. The effect of oblateness [9] is denoted by the
factor A.. Let ri (i =1, 2) be the distances between the centre of mass of the bodies m,
and m: and the centre of mass of body m. The unit of mass is chosen so that the sum of
the masses of finite bodies is equal to 1. We suppose [2-3] that m,= 1 - ¢ and m-= gy,

where u is the ratio of the mass of the smaller primary to the total mass of the

primaries and 0 < u < Y. The unit of distance is taken as the distance between the

primaries. The unit of time is chosen so that the gravitational constant is equal to 1.

The three dimensional restricted 3-bodies problem (we fake also into consideration the
influence of Yarkovsky effect), with an oblate primary m. and both primaries radiating,
could be presented in barycentric rotating co-ordinate system by the equations of

motion below [2-3]:
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-where Y x (¢), Yy (1), Y 2 (t) — are the projecting of Yarkovsky effect acceleration Y (2)
onto the appropriate axis Ox, Oy, Oz,

- besides, where

- is the angular velocity of the rotating coordinate system and A: - is the oblateness

coefficient. Here
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- where AE is the equatorial radius, AP is the polar radius and R is the distance

between primaries. Besides, we should note that
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- are the distances of infinitesimal mass from the primaries [2].

We neglect the relativistic Poynting-Robertson effect which may be treated as a
perturbation for cosmic dust (or for small particles, less than I cm in diameter), see

Chernikov [10], as well as we neglect the effect of variable masses of 3-bodies [11].

The possible ways of simplifying of equations (2.1):

- if we assume effect of oblateness is zero, A-=0 (= n = 1), it means m: is

non-oblate spheroid (we will consider only such a case below);

- if we assume ¢; = ¢g-= 1, it means a case of restricted 3-bodies problem [5].



3. Exact solution (a case of spiral motion).

Regarding the orbit of small 3-rd body, let us assume such an orbit to be like spiral

(Pic.1). Also let us assume Yarkovsky effect is zero.
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Pic.1. Types of spiral motion.

Besides, let us remind that we could obtain from the equations of system (2.1) a

Jacobian-type integral of motion [5-6]:

(X)) + () + (2 = 2Q(x,y,2) + C 3.1

- where C is so-called Jacobian constant.

As per assumption above, it means that components of solution {xi} = {x(?), y(¢), z(£)}

(i =1, 2, 3) should be presented as below:

x=¢&(t)-cost, y=&(t)-sint, z=2z(1),



- where, for example:

1) If &¢) = at, z(f) = bt - we should obtain the spiral of screw line type:

- here{a,b,c} are supposed to be the arbitrary positive real constants.

Thus if we substitute the representation above for the components of solution {x/} =

{x(9), ¥(¢), z(£)}, we should obtain from (3.1) the proper equation below

(E(t)-cost —E(t)-sint) + (E(¢)-sint + & (¢)-cost) > + (2)* = 2Q(x,y,z) + C,
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- where the expression for Q (¢) in (2.2) should be simplified in the case of non-

oblateness A-=0 (n = 1):
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So, taking into consideration the expression (3.3) for Q (), we obtain from (3.2)
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Besides, we should note from (3.4) that the proper restriction below should be valid:
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- here {q/, q-} € (-, 1].

There are a two possibilities to solve the equation (3.4):



- 1) first, we assume z (¢) to be given as a proper function of parameter ¢, then

we should find a solution of ODE of the 1-st kind for &(¢);

- 2) or the 2-nd, we assume £ (¢) to be given as a proper function of parameter ¢,

then we should find a solution of ODE of the 1-st kind for z (¢).

Let us demonstrate the 2-nd way of above:
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Equation (3.5) could be simplified if we consider a quasi-planar case of orbital
motion:
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- where the solution for the last equation is presented below, {q, g2} € (-0, 1]:
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Expression (3.6) defines the evolution of variable z (f), which is assumed to be

depending on the given function &(¢).

Besides, due to the appropriate restrictions of meanings of variables in restricted 3-
bodies problem, from inequality above we should note that the proper restriction

below should be valid for all meanings of parameter ¢ > 0:

1

E@) < <cm)%, = &@t) < (C,)7t +C,,

{C,, C,} =const.

It means a proper restriction to the type of spiral for orbital motion of small 3-rd body,

which could be possible for choosing as the exact solution of equations (2.1) or (3.1).

For example, let us demonstrate a calculation for the case of spiral motion of screw

line type, &) =C+, C > 0; for simplicity, let us consider the case u = Y (m, = m.):
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It mean a case of orbital motion as below, in regard to variable z (f) (where the

beginning of the orbital motion is located at the top of Pic.2 below):
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Pic.2. Types of spiral motion (exact solutions).

Additionally, we should especially note well-known fact: in the case of
photogravitational restricted 3-bodies problem with Yarkovsky effect [3] there is no

analogue of Jacobian-type integral [5-6] for ODE system of motion (2.1).
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4. Conclusion.

We obtained a new type of exact solution for photogravitational restricted 3-bodies

problem [1-3] (the case of spiral motion).

According to the Bruns theorem [4], there is no other invariants except well-known 10
integrals for 3-bodies problem (including integral of energy, momentum, etc.). But in the
case of restricted 3-bodies problem, there is no other invariants except only one,

Jacobian-type integral of motion [5-6].

A key point is that from the Jacobian-type integral we obtain the appropriate specific
case of spiral motion for photogravitational restricted 3-bodies problem (when orbit of
small 3-rd body is assumed to be like a spiral). Besides, we should especially note that
there is no analogue of Jacobian-type integral of motion in the case of
photogravitational restricted 3-bodies problem if we take into consideration even a

small Yarkovsky effect [3].
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