The local Doppler effect due to Earth's rotation and the CNGS neutrino anomaly due to neutrino's index of refraction through the Earth Crust

Armando V.D.B. Assis*, *Departamento de Física, Universidade Federal de Santa Catarina - UFSC, Trindade 88040-900, Florianópolis, SC, Brazil. armando.assis@pgfsc.ufsc.br

Abstract

In this brief paper, we show the neutrino velocity discrepancy obtained in [1] may be due to the local Doppler effect between a local clock attached to a given detector at Gran Sasso, say \mathcal{C}_{G}, and the respective instantaneous clock crossing \mathcal{C}_{G}, say \mathcal{C}_{C}, being this latter at rest in the instantaneous inertial frame having got the velocity of rotation of CERN about Earth's axis in relation to the fixed stars. With this effect, the index of refraction of the Earth crust may accomplish a refractive effect by which the neutrino velocity through the Earth crust turns out to be small in relation to the speed of light in the empty space.

1 Definitions and Solution

Firstly, the effect investigated here is not the same one that was investigated in [2], but, throughout this paper, we will use some useful configurations defined in [2]. The relative velocity between Gran Sasso and CERN due to the Earth daily rotation may be written:

$$
\begin{equation*}
\vec{v}_{G}-\vec{v}_{C}=2 \omega R \sin \alpha \hat{e}_{z}, \tag{1}
\end{equation*}
$$

where \hat{e}_{z} is a convenient unitary vector, the same used in [2], ω is the norm of the Earth angular velocity vector about its daily rotation axis, being R given by:

$$
\begin{equation*}
R_{E}=\frac{R}{\cos \lambda} \tag{2}
\end{equation*}
$$

where R_{E} is the radius of the Earth, its averaged value $R_{E}=$ $6.37 \times 10^{6} \mathrm{~m}$, and α given by:

$$
\begin{equation*}
\alpha=\frac{1}{2}\left(\alpha_{G}-\alpha_{C}\right), \tag{3}
\end{equation*}
$$

where α_{C} and α_{G} are, respectively, CERN's and Gran Sasso's longitudes $(\leftarrow W E \rightarrow$). Consider the inertial (in relation to the fixed stars) reference frame $O_{C} x_{C} y_{C} z_{C} \equiv O x y z$ in [2]. This is the lab reference frame and consider this frame with its local clocks at each spatial position as being ideally synchronized, viz., under an ideal situation of synchronicity between the clocks of $O_{C} x_{C} y_{C} z_{C} \equiv O x y z$. This situation is the expected ideal situation for the OPERA collaboration regarding synchronicity in the instantaneous lab (CERN) frame.

Now, consider an interaction between a single neutrino and a local detector at Gran Sasso. This event occurs at a given spacetime point $\left(t_{v}, x_{v}, y_{v}, z_{v}\right)$ in $O_{C} x_{C} y_{C} z_{C} \equiv O x y z$. The interaction instant t_{v} is measured by a local clock C_{C} at rest at $\left(x_{v}, y_{v}, z_{v}\right)$ in the lab frame, viz., in the $O_{C} x_{C} y_{C} z_{C} \equiv$ $O x y z$ frame. But, under gedanken, at this instant t_{v}, according to $O_{C} x_{C} y_{C} z_{C} \equiv O x y z$, there is a clock C_{G} attached to the detector at Gran Sasso that crosses the point $\left(t_{v}, x_{v}, y_{v}, z_{v}\right)$ with velocity given by Eq. (1). Since C_{G} crosses C_{C}, the

Doppler effect between the proper tic-tac rates measured at each location of C_{C} and C_{G}, viz., measured at their respective locations in their respective reference frames (the reference frame of C_{G} is the $O_{G} x_{G} y_{G} z_{G} \equiv \tilde{O} \tilde{x} \tilde{y} \tilde{z}$ in [2], also inertial in relation to the fixed stars), regarding a gedanken control tic-tac rate continuosly sent by C_{C}, say via electromagnetic pulses from C_{C}, is not transverse. Since the points at which C_{C} and C_{G} are at rest in their respective reference frames will instantaneously coincide, better saying, will instantaneously intersect, at t_{v} accordingly to C_{C}, they must be previously approximating, shortening their mutual distance during the interval $t_{v}-\delta t_{v} \rightarrow t_{v}\left(\delta t_{v} \rightarrow 0, \delta t_{v}>0\right)$ along the line passing through these clocks as described in the C_{C} world.

Suppose C_{C} sends \mathcal{N} electromagnetic pulses to C_{G}. During the C_{C} proper time interval $\left(t_{v}-\delta t_{v}\right)-0=t_{v}-\delta t_{v}{ }^{*}$ within which C_{C} emits the N electromagnetic pulses, the first emitted pulse travels the distance $c\left(t_{v}-\delta t_{v}\right)$ and reaches the clock C_{G}, as described by C_{C}. Within this distance, there are \mathcal{N} equally spaced distances between consecutive pulses as described in the C_{C} world, say λ_{C} :

$$
\begin{equation*}
\mathcal{N} \lambda_{C}=c\left(t_{v}-\delta t_{v}\right) \tag{4}
\end{equation*}
$$

Also, since the clocks C_{C} and C_{G} will intersect at t_{v}, as described in $O_{C} x_{C} y_{C} z_{C} \equiv O x y z$, during the interval δt_{v}, the clock C_{G} must travel the distance $2 \omega R \sin \alpha \delta t_{v}$ in the C_{C} world to accomplish the matching spatial intersection at the instant t_{v}, hence the clock C_{G} travels the $2 \omega R \sin \alpha \delta t_{v}$ in the

[^0]C_{C} world, viz., as described by C_{C} in $O_{C} x_{C} y_{C} z_{C} \equiv O x y z$:
\[

$$
\begin{equation*}
\mathcal{N} \lambda_{C}=2 \omega R \sin \alpha \delta t_{v} \Rightarrow \delta t_{v}=\mathcal{N} \frac{\lambda_{C}}{2 \omega R \sin \alpha} \tag{5}
\end{equation*}
$$

\]

Solving for t_{v}, from the Eqs. (4) and (5), one reaches:

$$
\begin{equation*}
t_{v}=\frac{\mathcal{N} \lambda_{C}}{c}\left(1+\frac{c}{2 \omega R \sin \alpha}\right) . \tag{6}
\end{equation*}
$$

Now, from the perspective of C_{G}, in $O_{G} x_{G} y_{G} z_{G} \equiv \tilde{O} \tilde{x} \tilde{y} \tilde{z}$, there must be \mathcal{N} electromagnetic pulses covering the distance:

$$
\begin{equation*}
c\left(t_{v}^{G}-\delta t_{v}^{G}\right)-2 \omega R \sin \alpha\left(t_{v}^{G}-\delta t_{v}^{G}\right) \tag{7}
\end{equation*}
$$

where $t_{v}^{G}-\delta t_{v}^{G}$ is the time interval between the non-proper instants $t^{G}=t_{v}=0$, at which the C_{C} clock send the first pulse, and the instant $t_{v}^{G}-\delta t_{v}^{G}$, at which this first pulse reaches C_{G}, as described by C_{G} in its world $O_{G} x_{G} y_{G} z_{G} \equiv \tilde{O} \tilde{x} \tilde{y} \tilde{z}$. Within this time interval, $t_{v}^{G}-\delta t_{v}^{G}, C_{G}$ describes, in its $O_{G} x_{G} y_{G} z_{G} \equiv \tilde{O} \tilde{x} \tilde{y} \tilde{z}$ world, the clock C_{C} approximating the distance:

$$
\begin{equation*}
2 \omega R \sin \alpha\left(t_{v}^{G}-\delta t_{v}^{G}\right) \tag{8}
\end{equation*}
$$

with the first pulse traveling:

$$
\begin{equation*}
c\left(t_{v}^{G}-\delta t_{v}^{G}\right) \tag{9}
\end{equation*}
$$

giving the distance within which there must be \mathcal{N} equally spaced pulses, say, spaced by λ_{G}, as described by C_{G} in its $O_{G} x_{G} y_{G} z_{G} \equiv \tilde{O} \tilde{x} \tilde{y} \tilde{z}$ world:

$$
\begin{equation*}
\mathcal{N} \lambda_{G}=(c-2 \omega R \sin \alpha)\left(t_{v}^{G}-\delta t_{v}^{G}\right) \tag{10}
\end{equation*}
$$

With similar reasoning that led to the Eq. (5), now in the $O_{G} x_{G} y_{G} z_{G} \equiv \tilde{O} \tilde{x} \tilde{y} \tilde{z} C_{G}$ world, prior to the spatial matching intersection between C_{C} and C_{G}, the C_{C} clock must travel the distance $\mathcal{N} \lambda_{G}$ during the time interval δt_{v}^{G}, with the C_{C} approximation velocity $2 \omega R \sin \alpha$:

$$
\begin{equation*}
\mathcal{N} \lambda_{G}=2 \omega R \sin \alpha \delta t_{v}^{G} \Rightarrow \delta t_{v}^{G}=\mathcal{N} \frac{\lambda_{G}}{2 \omega R \sin \alpha} \tag{11}
\end{equation*}
$$

From Eqs. (10) and (11), we solve for t_{v}^{G} :

$$
\begin{equation*}
t_{v}^{G}=\mathcal{N} \frac{\lambda_{G}}{2 \omega R \sin \alpha} \frac{1}{[1-(2 \omega R \sin \alpha) / c]} \tag{12}
\end{equation*}
$$

From the Eqs. (6) and (12), we have got the relation between the neutrino arrival instant t_{v} as measured by the CERN reference frame, $O_{C} x_{C} y_{C} z_{C} \equiv O x y z$, and the neutrino arrival instant t_{v}^{G} as measured by the Gran Sasso reference frame, $O_{G} x_{G} y_{G} z_{G} \equiv \tilde{O} \tilde{x} \tilde{y} \tilde{z}$, at the exact location of the interaction at an interation location within the Gran Sasso block of detectors, provided the effect of the Earth daily rotation under the assumptions we are taking in relation to the intantaneous movements of these locations in relation to the fixed stars as previously discussed:

$$
\begin{equation*}
\frac{t_{v}^{G}}{t_{v}}=\frac{\lambda_{G}}{\lambda_{C}}\left[1-(2 \omega R \sin \alpha)^{2} / c^{2}\right]^{-1}=\gamma^{2} \frac{\lambda_{G}}{\lambda_{C}} \tag{13}
\end{equation*}
$$

where $\gamma \geq 1$ is the usual relativity factor as defined above.
Now, $\lambda_{G} / \lambda_{C}$ is simply the ratio between the spatial displacement between our consecutive gedanken control pulses, being these displacements defined through our previous paragraphs, leading to the Eqs. (4) and (10). Of course, this ratio is simply given by the relativistic Doppler effect under an approximation case in which C_{C} is the source and C_{G} the detector. The ratio between the Eqs. (10) and (4) gives:

$$
\begin{equation*}
\frac{\lambda_{G}}{\lambda_{C}}=[1-(2 \omega R \sin \alpha) / c] \frac{\left(t_{v}^{G}-\delta t_{v}^{G}\right)}{\left(t_{v}-\delta t_{v}\right)} \tag{14}
\end{equation*}
$$

But the time interval $\left(t_{v}-\delta t_{v}\right)$ is a proper time interval measured by the source clock C_{C}, as previously discussed. It accounts for the time interval between the first pulse sent and the last pulse sent as locally described by C_{C} is its $O_{C} x_{C} y_{C} z_{C} \equiv$ $O x y z$ world. These two events accur at different spatial locations in the C_{G} detector clock world $O_{G} x_{G} y_{G} z_{G} \equiv \tilde{O} \tilde{x} \tilde{y} \tilde{z}$, since C_{C} is approximating to C_{G} is this latter world. Hence, $t_{v}-\delta t_{v}$ is the Lorentz time contraction of $t_{v}^{G}-\delta t_{v}^{G}$, viz.:

$$
\begin{gather*}
t_{v}-\delta t_{v}=\gamma^{-1}\left(t_{v}^{G}-\delta t_{v}^{G}\right) \therefore \\
\frac{\left(t_{v}^{G}-\delta t_{v}^{G}\right)}{t_{v}-\delta t_{v}}=\gamma=\left[1-(2 \omega R \sin \alpha)^{2} / c^{2}\right]^{-1 / 2} . \tag{15}
\end{gather*}
$$

With the Eqs. (14) and (15), one reaches the usual relativistic Doppler effect expression for the approximation case:

$$
\begin{equation*}
\frac{\lambda_{G}}{\lambda_{C}}=\sqrt{\frac{1-(2 \omega R \sin \alpha) / c}{1+(2 \omega R \sin \alpha) / c}} \tag{16}
\end{equation*}
$$

With the Eq. (16), the Eq. (13) reads:

$$
\begin{align*}
\frac{t_{v}^{G}}{t_{v}} & =\left[1-(2 \omega R \sin \alpha)^{2} / c^{2}\right]^{-1 / 2}[1+(2 \omega R \sin \alpha) / c]^{-1}= \\
& =\frac{\gamma}{1+(2 \omega R \sin \alpha) / c} \tag{17}
\end{align*}
$$

Since $(2 \omega R \sin \alpha) / c \ll 1$, we may apply an approximation for the Eq. (17), viz.:

$$
\begin{equation*}
\gamma \approx 1+\frac{1}{2} \frac{(2 \omega R \sin \alpha)^{2}}{c^{2}} \tag{18}
\end{equation*}
$$

and:

$$
\begin{equation*}
[1+(2 \omega R \sin \alpha) / c]^{-1} \approx 1-(2 \omega R \sin \alpha) / c \tag{19}
\end{equation*}
$$

from which, neglecting the higher order terms, the Eq. (17) reads:

$$
\begin{align*}
& \frac{t_{v}^{G}}{t_{v}} \approx 1-\frac{2 \omega R \sin \alpha}{c} \therefore \tag{20}\\
& t_{v}^{G}-t_{v}=-\frac{2 \omega R \sin \alpha}{c} t_{v} \tag{21}
\end{align*}
$$

From this result, the clock that tag the arrival interaction instant t_{v}^{G} in Gran Sasso turns out to measure an arrival time that is shorter than the correct one, this latter given by t_{v}. With the discrepancy, ϵ, given by the value measured by the OPERA Collaboration [1], since t_{v} is simply given by L / v_{v}, where L is the baseline distance between the CERN and Gran Sasso, v_{v} the speed of neutrino through the Earth crust, one obtains a value for v_{v}. We rewrite the Eq. (21):

$$
\begin{equation*}
\epsilon=t_{v}^{G}-t_{v}=-\frac{2 \omega R \sin \alpha}{c} \frac{L}{v_{v}} . \tag{22}
\end{equation*}
$$

With the values* $\omega=7.3 \times 10^{-5} s^{-1}, R=R_{E} \cos \lambda \approx 6.4 \times$ $10^{6} m \times \cos (\pi / 4)=4.5 \times 10^{6} m, \sin \alpha \approx \sin (7 \pi / 180)=1.2 \times$ $10^{-1}, c=3.0 \times 10^{8} \mathrm{~ms}^{-1}$ and $L=7.3 \times 10^{5} \mathrm{~m}$, also with the discrepancy ϵ, given by the Eq. (22), being, say, $\epsilon=$ $-62 \times 10^{-9} \mathrm{~s}$, the neutrino velocity through the Earth crust reads:

$$
\begin{equation*}
v_{v} \approx 3.1 \times 10^{6} \mathrm{~ms}^{-1}, \tag{23}
\end{equation*}
$$

being the refraction index of the Earth crust for neutrino given by:

$$
\begin{equation*}
n_{c \mid v}=\frac{c}{v_{v}} \approx 97 . \tag{24}
\end{equation*}
$$

In reference to the matching PDF (probability distribution function) in the OPERA experiment, one would have a discrepancy between the maximum likelihood distribution obtained from the block of detectors at Gran Sasso and the translation of the PDF due to the protons distribution by TOF_{c} given by, in virtue of the Eq. (22):

$$
\begin{align*}
& \mathrm{TOF}_{v}=\mathrm{TOF}_{c}+\epsilon=\mathrm{TOF}_{c}-\frac{2 \omega R \sin \alpha}{c} \frac{L}{v_{v}} \therefore \\
& \mathrm{TOF}_{v}-\mathrm{TOF}_{c} \approx-62 n s \tag{25}
\end{align*}
$$

under the reasoning and simplifications throughout this paper. One should notice the resoning here holds if the discrepancy turns out to be encrusted within the time translation of the PDF data, but such effect would not arise if the time interval $T O F_{v}$ were directly measured, since, in this latter situation, such interval would only read L / v_{v}.

Conclusion

It is interesting to observe that even with a velocity having got two orders of magnitude lesser than c a neutrino may be interpreted as having got a velocity greater than c, depending on the method used to measure neutrino's time of flight, with the Earth crust presenting a index of refraction $n_{c \mid v}>1$, due, also, to the local Doppler effect between the clocks attached to Gran Sasso and the respective intersecting ones in the CERN reference frame, as discussed throughout this paper, due to the Earth daily rotation.

[^1]
Acknowledgments

A.V.D.B.A is grateful to Y.H.V.H and CNPq for financial support.

Submitted XX XXXXXXXXX XX, XXXX / XX XXXXXXXXX XX,
XXXX

References

1. The OPERA collaboration: T. Adam et al. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam http://arxiv.org/abs/1109.4897 arXiv:1109.4897, 2011.
2. Armando V.D.B. Assis. Prog. Phys. 4(4), 85 to 90 (2011).

[^0]: *The initial instant C_{C} starts to emit the electromagnetic pulses is set to zero in both the frames $O_{C} x_{C} y_{C} z_{C} \equiv O x y z$ and $O_{G} x_{G} y_{G} z_{G} \equiv \tilde{O} \tilde{x} \tilde{y} z ;$ zero also is the instant the neutrino starts the travel to Gran Sasso in $O_{C} x_{C} y_{C} z_{C} \equiv$ $O x y z$; hence the instant the neutrino starts the travel to Gran Sasso and the emission of the first pulse by C_{C} are simultaneous events in $O_{C} x_{C} y_{C} z_{C} \equiv$ $O x y z$. These events are simultaneous in $O_{G} x_{G} y_{G} z_{G} \equiv \tilde{O} \tilde{x} \tilde{y} \tilde{z}$ too, since they have got the same spatial coordinate $z_{c}=z=0$ along the $O_{C} z_{C} \equiv O z$ direction as defined in [2]. The realtive motion between CERN and Gran Sasso is parallel to this direction. The only one difference between these events is the difference in their $x_{C}=x$ coordinates, being $x_{C}=0$ for the neutrino departure and $x_{C}=L=7.3 \times 10^{5} m$ for C_{C}, being these locations perpendicularly located in relation to the relative velocity given by the Eq, (1).

[^1]: ${ }^{*}$ See the Eqs. (2) and (3). The latitudes of CERN and Gran Sasso are, respectively: $46^{\operatorname{deg}} 14^{\mathrm{min}} 3^{\sec }(\mathrm{N})$ and $42^{\mathrm{deg}} 28^{\mathrm{min}} 12^{\mathrm{sec}}(\mathrm{N})$. The longitudes of CERN and Gran Sasso are, respectively: $6^{\text {deg }} 3^{\min } 19^{\text {sec }}(\mathrm{E})$ and $13^{\mathrm{deg}} 33^{\mathrm{min}} 0^{\mathrm{sec}}(\mathrm{E})$.

