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• ABSTRACT: We give a possible interpretation of the Xi-function of Riemann as the 

Functional determinant  ( )det E H−  for a certain Hamiltonian quantum operator in 

one dimension  
2

2
( )

d
V x

dx
− +  for a real-valued function V(x) , this potential V is 

related to the half-integral of the logarithmic derivative for the Riemann Xi-function, 
through the paper we will assume that the reduced Planck constant is defined in units 
where 1=h  and that the mass is 2 1m = .In this case the Energies of the Hamiltonian 

operator will be the square of the imaginary part of the Riemann Zeros 2
n nE γ=  Also 

trhough this paper we may refer to the Hamiltonian Operator whose Energies are the 

square of the imaginary part of the Riemann Zeros as H  or 2H  (square) in the same 

case we will refer to the potential inside this Hamiltonian either as 2 ( )V x   or  ( )V x  to 

simplify notation.
• Keywords: =  Riemann Hypothesis, Functional determinant, WKB semiclassical 

Approximation , Trace formula , Quantum chaos.

RIEMANN FUNCTION AND SPECTRAL DETERMINANTS

The Riemann Hypothesis is one of the most important open problems in mathematics, 

Hilbert and Polya [4] gave the conjecture that would exists an operator 
1

2
iL+  with 

†L L=  so the eigenvalues of this operator would yield to the non-trivial zeros for the 
Riemann zeta function, for the physicists one of the best candidates would be a 
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Hamiltonian operator in one dimension  
2

2
( )

d
V x

dx
− +  , so when we apply the 

quantization rules the Eigenvalues (energies) of this operator would appear as the 

solution of the spectral determinant  ( )det E H−  , if we define the Xi-function by 

( ) / 2( 1)
( )

2 2
ss s s

s sξ ζ π −−  = Γ  
, then RH (Riemann Hypothesis) is equivalent to the fact 

that the function 
1

2
iEξ  +  

 has REAL roots only , and then from the Hadamard 

product expansion [1] for the Xi-function , then 
1
2

det( )
(1/ 2

iE
E H

ξ

ξ

 +   = −  is an spectral 

(Functional) determinant of the Hamiltonian operator, if we could give an expression 
for the potential V(x) so the eigenvalues are the non-trivial zeros of the zeta function, 
then RH would follow, we will try to use the semiclassical WKB analysis [8] to obtain 
an approximate expression for the inverse of the potential.

Trough this paper we will use the definition of the half-derivative 1/ 2
xD f  and the half 

integral 1/ 2
xD f−  , this can be defined in terms of integrals and derivatives as

1/ 2

1/ 2
0

( ) 1 ( )

(1/ 2)

xd f x d dtf t

dx dx x t
=

Γ −∫            
1/ 2

1/ 2
0

( ) 1 ( )

(1/ 2)

xd f x f t
dt

dx x t

−

=
Γ −∫    (1)

The case 3/ 2
xD f  we can simply use the identity  ( )3/ 2 1/ 2

x x

d
D f D f

dx
= , these half-integral 

and derivative will be used further in the paper in order to relate the inverse of the 
potential V(x) to the density of states g(E) that ‘counts’ the energy levels of a one 
dimensional (x,t) quantum system.

o Semiclassical evaluation of the potential V(x) :

Unfortunately the potential V can not be exactly evaluated, a calculation of the potential 
can be made using the semiclassical WKB quantization of the Energy, in order to get 
the boundary condition for our Quantum system  (0) 0Ψ = , we impose the extra 
condition that for negative values of ‘x’ the potential becomes infinite (the particle can 
not penetrate in the regions whenever x <0 due to an infinite potential wall) ( )V x = ∞  
for x<0 , then in the WKB approximation we have the fractional-differential equation.

( ) 1
3/ 2

0 0

( )
2 ( ) 2 ( ) 2

a a E E

x

dx dV x
n E E V x dx E V D

dV dx
π π

= −
−  

= − → − =  
 

∫ ∫      (2)

Here we have introduced the fractional integral of order 3/2 , for a review about 
fractional Calculus we recommend the text by Oldham [11] for a good introduction to 
fractional calculus , a solution to equation (2) can be obtained by applying the inverse 
operator 1/ 2

xD  on the left side to get
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1/ 2
1

1/ 2

( )
( ) 2

d n x
V x

dx
π− =         

1/ 2
1

1/ 2

( )
( ) 2

d g x
V x

dx
π

−
−

−=       ( )
0

( ) n
n

dn
g x x E

dx
δ

∞

=

= = −∑      (3)

Here n(E) or N(E) is the function that counts how many energy levels are below the 

energy E , and g(E) is the density of states  
0

( ) ( )n
n

g E E Eδ
∞

=

= −∑  , for the case of 

Harmonic oscillator ( )
E

N E
ω

=  so using formula (2) and taking the inverse function we 

recover the potential   
2 2

( )
4

x
V x

ω= ,which is the usual Harmonic potential for a mass 

2 1m =  a similar calculation can be made for the infinite potential well of length ‘L’ 
with boundary conditions on  [0, )∞ to check that our formula (3) can give coherent 

results. In many cases (Harmonic oscillator) the quantization condition 
1

( )
2

N E +  gives 

better results than simply setting N(E) so our relation between the inverse of the 
potential and the counting function for states (Energies) of the 1-D Hamiltonian with a 

general mass of ‘m’ takes the form 
2 1/ 2

1
1/ 2

2 1
( ) ( )

2

d
V x n x

m dx

π−  = +  
h

 . This is a 

consequence of the WKB quantization formula  
1

2
2C

pdq n π = +  ∫ h . This WKB 

quantization of energies can be also expressed as ( )cos ( ) 0N Eπ =  , with ‘N’ being the 

Eigenvalue staircase function (the smooth plus the fluctuating part of it) , so 

( )
0

1
( ) lim ( ) ( )

2
N E N E N E

δ
δ δ

→
= + + −  , in this case 

1
( )

2
N E n Z ++ = ∈

o Numerical calculations of functional determinants using the Gelfand-Yaglom 
formula :

In the semiclassical approach to Quantum mechanics we must calculate path integrals of 

the form  [ ] 1

det
H

V

D e
H

φ φφ − =∫  and hence compute a Functional determinant, one of 

the fastest and easiest way is the approach by Gelfand and Yaglom [2] , this technique is 
valid for one dimensional potential and allows you calculate the functional determinant 
of a certain operator ‘H’ without needing to compute any eigenvalue, for example if we 
assume Dirichlet boundary conditions on the interval [0, )∞

( )
2

2 2 ( )
0

(0)
0

0

( )det ( )
1

det( ) ( )

n z
n

n n
n

n

E zH z z L

H E L
E

∞

∞
=

∞
=

=

++   Ψ= = + =  Ψ 

∏
∏

∏
        L → ∞       (4)

 
Here the function   ( ) ( )z LΨ  is the solution of the Cauchy initial value problem     
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2
2 ( )

2
( ) ( ) 0zd

V x z x
dx

 
− + + Ψ = 

 
          ( ) (0) 0zΨ =        

( ) (0)
1

zd

dx

Ψ =        (5)

In the following section, we will discuss how to apply this theorem to evaluate 
functional determinants in one dimension plus the quantization condition 

1
( ) ( )

2
N E n E= +  to obtain a Hamiltonian whose Energies are precisely the square of 

the imaginary part of the Riemann zeros 2
n nE γ=  and so the functional determinant of 

the Hamiltonian is the Riemann Xi-function  

1
det( )2

1 det( )
2

i z
E H

H

ξ

ξ

 +  −  =
− 

  

 . Then the 

Energies of the system will appear as the zeros of det( ) 0E H− =

o Toy models of Functional determinants:

As a toy model of this method , let be the Sturm-Liouville problem 
2

2

( )
( )n

d y x
E y x

dx
− =  

with boundary conditions (0) (1) 0y y= =  , this problem can be easily solved to prove 
that the Energies and the functional determinant are the following 

2 2
nE n π=      1, 2,3,...n =     

( )
2 2

1

sin
1

n

x x

nx π

∞

=

 = −  ∏        (6)

If we use the expansion of the cotangent plus the Sokhotsky’s formula
1 1

( )i x P
x i x

πδ
ε

 = − +  +  
         2 2 2 2

1

cot( ) 1 1

2 2 reg
n

x

x x x n iπ ε

∞

=

− =
− +∑    (7)

The factor iε  is introduced in order (6) to be regular at the points 2 2n π for any positive 
integer ‘n’ bigger than 1 if we take the imaginary part inside (18) we have that 

( )2 2 2
2

1

1 cot( ) 1

2 2 reg n

x
mg x n

x x
δ π

π

∞

=

 ℑ − = − − 
 

∑   making the substitution x E→  the last 

term is just the derivative of  N(E) in the case of the Infinite potential well so in formal 
sense (theory of distributions) one expects that the number of eigenvalues of the 

problem  
2

2

( )
( )n

d y x
E y x

dx
− =   is given by the following  formal  formula 

1 sin
( )

reg

E
N E Arg

Eπ
 

=    
 . Here ‘reg’ means that we should replace the factor 

( ) 1
x a

−−  (singular at the point a) by the distribution  ( ) 1
x i aε −+ −  with  0ε →   , hence 

one could hope that the same would be valid for the Riemann Xi-function , so if we 
repeat our same argument for the Riemann Hypothesis we find
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1 1
( )

2 reg

N E Arg i Eξ
π

 = +  
   2

0

' 1 1

2 2
n

nreg n

a
i x

x ix

ξ ε
ξ ε γ

∞

=

 + + =  + − 
∑   { }na R∈     (8) 

Another more complicate example is the differential equation  
2

2
0n

d y dy
x y

dx dx
λ+ + =  

with the boundary conditions (1) 0y =  and with a solution bounded as 0x → , the 
equation for the Eigenvalues is given by the square of zeros of the Bessel function 

0 ( ) 0nJ λ = , the Eigenvalue counting function is then  ( )0

1
( ) ( )

reg
N E Arg J E iε

π
= + , 

this is another example of how the Eigenvalues of certain self-adjoint operator are 
related to the roots of a function that has a product expansion over its zeros in the form 

0 0 2
0

( ) (0) 1
n n

x
J x J

α

∞

=

 
= − 

 
∏  , in case Riemann Hypothesis is true (and the self-adjoint 

operator is a Hamiltonian whose potential is given in (14) ) the Gelfand-Yaglom 
theorem used to compute the quotient of two functional determinants , could be used to 
give a representation of the Riemann Xi-function

A HAMILTONIAN WHOSE ENERGIES ARE THE SQUARE OF THE 
IMAGINARY PART OF THE RIEMANN NON-TRIVIAL ZEROS

We can generalize these results to the case of a Hamiltonian whose Energies are just the 
square of the imaginary part of Riemann zeros 2

n nE γ=  , in this case the Energy 

counting function is given by 
1 1

( )
2

N E Arg i Eξ
π

 = +  
 (since now we are counting 

squares of the Riemann zeros,) here we choose the branch of the function
1

log
2

i Eζ  +  
 (0) 0N =  and  ( )arg 1/ 2 0ξ = , using the same reasoning we did in (3) 

to get the inverse of the potential , for this Hamiltonian operator 2
2 2( )x V x H−∂ + =  

2
2

2x

d

dx
∂ =   we get as  the following expression.

1/ 2
1

2 1/ 2

1 1 1
( ) 2

2 2

d
V x Arg i x

dx
π ξ ε

π
−   ≈ + + +    

  0ε →   x > 0    (9)

In this case the functional determinant of this Hamiltonian should be

( ) ( )
( )

2 0
2

02

0

( ) 1/ 2det
1

det( ) 1/ 2

n
n

n n
n

n

E z i zH z z

H E
E

ξ

ξ

∞

∞
=

∞
=

=

− +−  
= = − = 

 

∏
∏

∏
    z > 0   (10)
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In this case the Hamiltonian would be bounded so 
2

2 0 199.750490..H γ≥ =  since we 

are dealing with 1-D potential the functional determinant inside (15) can be calculated 
using the Gelfand-Yaglom Theorem and it will be equal to

( ) ( )
2

(0)
2

det ( )

det( ) ( )

zH z L

H L

− Ψ=
Ψ

 with       ( )2 ( )
2 ( ) ( ) 0z

x V x z x−∂ + − Ψ =     (11)

Plus the initial value conditions  ( ) (0) 0zΨ =  and  
( ) (0)

1
zd

dx

Ψ =  .

Unfortunately , equation (8) can not be solved exactly , and we will have to use the 
WKB approximation in order to obtain the function ( ) ( )z xΨ

( ) 1/ 4( )
2 2 2

0 0

( ) ( ) exp ( ) exp ( )
x x

z x z V x C i z V t dt C i z V t dt
−

+ −

     Ψ ≈ − − + − −    
     

∫ ∫   (12)

0C C+ −+ =  since ( ) (0) 0zΨ =  . Another equivalent formulation of Gelfand-Yaglom 
theorem applied to Riemann Hypothesis would include the quotient of 2 functional 
determinants 

( )
( )

2 ( )
2

2 ( )
0

1
det ( ) 2
det( ) ( ) 1/ 2

z
x

z
x free

i zV z L

V z L

ξ

ξ

 + −∂ + − Ψ  = =
−∂ + − Ψ

    L → ∞  ,  0 0V =       (13)

With the initial conditions, 
( ) ( )(0) 0 (0)z z

freeΨ = = Ψ  and   
( )( ) (0)(0)

1
zz

freedd

dx dx

ΨΨ = =  

(Also if we add a term 
1

4
 to the potential 2 ( )V x  inside (14) then the eigenvalues wouls 

be 
2 21

4 ns γ= +  the square of the modulus of the Riemann Zeros+)

The condition for the determinant to be proportional to  
1

2
i Eξ  +  

 is a necessary and 

sufficient condtion to prove RH,  due to the self-adjointness of  †
2 2H H= , the condition 

for the potential    0ε →  (given in (14) in an equivalent form) itself is not enough since 
there could still be some imaginary zeros of the Riemann Xi-function that would not 
appear inside the spectrum of the Hamiltonian, note that this is similar what it happened 
with the Quantum mechanical model for the zeros of the sine and Bessel functions 

( )sin x   , 0 ( )J x . As we have pointed out before  ( ) ( )
reg

Argf x Argf x iε= +  , so 

'( ) 1

( )

f x i dn
m

f x i dx

ε
ε π

 +ℑ = − + 
 is only nonzero for the values  ( ) 0if x = , n(x) here ‘counts’ 

the zeros of f(x).

o Inverse of the Potential for x>0  x=0  and x<0 :
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Since (9) is only valid for positive ‘s’ what happens for 0s ≤  ?, the idea is that for 

negative E (or s) the Eigenvalue counting function 
2

( ) 1
E

N E
γ ≤

= ∑  is equal to 0 (there are 

no negative eigenvalues) in this case the equation for the inverse potential and the 
potential turn out to be of the following form

   

1/ 2

1 1/ 2

2 1 1
rg   x>0

( ) 2 2

0                                           x 0

d
A i x

V x dx
ξ

π−

   + +   =    
 ≤

   so  ( ) 0V x =  for   x 0≤    (14)

And for positive ‘x’ we have to invert the function 
1/ 2

1/ 2

1 1 1
2 rg

2 2

d
A i x

dx
π ξ

π
  + +    

 , from (36) we get that there is a potential barrier at x=0 so we must impose the 
eigenvalue conditions for our Schröedinguer equation as  (0) 0 ( )y y= = ∞ .

From equation (14) and after inversion , we will get that for negative ‘x’ there is an 
infinite potential barrier so  ( )V x = ∞   for 0x <  , so the wave function of the system is 
0 at x =0 , this is not the unique possibility another alternative is to consider that the 
potential is EVEN  ( ) ( )V x V x= −  in this case the density of states will be a slightly 
different and the inverse of the potential will be defined for every ‘x’ in the form 

1/ 2
1

1/ 2

1 1 1
( ) rg

2 2

d
V x A i x

dx
π ξ

π
−   ≈ + +    

 , in this case there are 2 inverses, we must 

take the one with  ( ) 0V x ≥  x R∈ , so all the energies are positive  0nH E
φ

= >

.However if we make the potential ‘even’  ( ) ( )V x V x= −  the eigenfunctions will be odd 

or even  ( ) ( )( 1)n
n nx xΨ = Ψ − −  and for even Eigenfunctions we can not warrant that 

(0) 0Ψ =  so we are losing a boundary condition.
 

o Riemann-Weil formula, Primes  Riemann zeros and the inverse of 1
2 ( )V x− :

In Analytic Number Theory there is a formula now named the Riemann-Weil formula, 
relating a sum over primes and prime powers to a sum involving the imaginary part of 
the Riemann zeros

1

( ) 1 ' 1
( ) 2 2 (log ) ( ) (0) log

2 2 4 2n

i n ir
h h g n drh r g

nγ
γ π

π

∞∞

= −∞

Λ Γ   = − + + −   Γ   
∑ ∑ ∫    (15)

If we insert inside (15)  the function 2( , ) ( )h r s s rδ= −  and use the Zeta regularization 
algorithm to avoid the problem  that the first sum on the right of ( 15) is divergent 

log

1

( ) ' 1

2
i s n

reg
n

n
e i s

n

ζ
ζ

∞

=

Λ  = − +  
∑  we find (16) , with ( ) ( )

1 1

1
s i m

x i
δ

π ε
 

± = − ℑ   + ± 
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( )2 1 1 ' 1 1 log

2 22 2 2

' 1 1 ' 1 1 2 2
( )

4 2 4 24 4 2

regs i s i s
s s s

i i
s s

s s
i i s

s s s

γ

ζ ζ ππδ γ
ζ ζ

πδ πδ
ρ

   − = + + − −      
   − + +      Γ Γ    + + + − + =      Γ Γ   

∑
    (16)

0ε → ,Where we have used the property of the Dirac delta function 

( ) ( )
( )

'( )
n

n

x n

x x
f x

f x

δ
δ

−
= ∑  with  ( ) 0nf x =  inside (15) and (16) so for our case 

( ) ( ) ( )2

2

s s
s

s

δ γ δ γ
δ γ

− + +
− =  , now if we make the change of variable 2s s→  

inside (16) and use the expansion 
log

1

( ) ' 1

2
i s n

reg
n

n
e i s

n

ζ
ζ

∞

=

Λ  = − +  
∑  on the critical line 

,we can interpretate the density of states ( )sρ  as some short of distributional Riemann-

Weil formula. Also if we label the Energy  s E= , thus  E s k= =  , with ‘k’ being 

the momentum of the system p k= h , then the density of states or Riemann-Weil 

formula relates a sum over momenta for an even test function ‘h’ 
0

( )n
n

h k
∞

=
∑  to another 

sum for another even test function ‘g’ over the action of the system  ( ) logn nS E k p=
 

Integration over ‘s’ gives the counting function   
1 1

( )
2

n E Arg i Eξ
π

 = +  
, also if we 

approximate the sum ( )2 s
γ

πδ γ −∑  on the left of the Riemann-Weil formula by an 

integral over the phase space  ( )2

V

E H dpdqδ −∫  in 1-D we find the Abel integral 

equation  for the inverse of the potential  
1

2

0

( )
E dVdu

E C
duE u

ρ
−

=
−∫  , C R∈ , a similar 

equation can be obtainedusing differentiation with respect to ‘E’ inside  the Bohr-
Sommerfeld quantization conditions. The main idea here is to use the Riemann-Weil 

formula as if  it were the Trace of some operator  ( ){ }Tr E Hδ −  and then make use of 

the semiclassical WKB approach.

o Smooth and oscillating part of the inverse 1
2 ( )V x−  :

Also if we make use of the Zeta regularization technique and the Riemann-Von 
Mangoldt formulae [2] , for big positive –x- the inverse of the potential can be written 
as 

1/ 2
1

2 1/ 2

1
2 ( )

2 smooth oscillating

d
V N x N

dx
π−  ≈ + +  

 , with the smoothed Eigenvalue staircase
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2

1 ' 1 7 1
( ) log

4 2 2 4 2 8smooth

x x x x
N x Arg i x O

xπ π π π π
 Γ   = + − ≈ − + +     Γ     

   (17)

(This smooth density of states fullfills Weyl’s law with dimension 1d ε= + (due to the 
logarithmic term inside the asymptotics) namely / 2( ) ( )d

smoothN E O E≈  )

( )
2

sin log1 1 ( ) 1
( )

2 logoscillating
n

x nn
N x Arg i x

n n

π
ζ

π π

∞

=

+Λ = + ≈  
∑     x >0  (18)

The last Fourier series is DIVERGENT , in order to obtain a correction to the smooth 
part of the inverse of the potential, we could approximate this sum by using only the 
first 10 20 or 100 primes in order to obtain a finite correction to the smooth part, the 
idea is that for big ‘x’ and in the sense of distribution theory the inverse of the potential 

should be almost equal to ( ) 1/ 21
2

0

( )n n
n

V A H x E x E
∞

−−

=

≈ − −∑  for some real A. The 

Fourier series inside (18) is divergent , so perhaps we can take only the first 10 20 or 
100 first primes in order to obtain a finite result for (18).

Then by the Gelfand-Yaglom theorem the functional determinant of ( )2Det E H−  with 

energies 2
nE γ−  will be proportional to the Riemann Xi-function on the critical line 

( )2

0

1

2i
i

E i Eγ ξ
∞

=

 − ≈ +  
∏  , this determinant can be obtained by solving the initial 

value problem    ( )2
2 ( ) ( , ) 0x V x z z xφ−∂ + − =   with  ( ,0) 1x zφ∂ =  ,  ( ,0) 0zφ =

So, from our method we can deduce that

a) The Eigenvalue counting function ( )
0

( ) 1
n

n
E E n

N E H E E
∞

≤ =

= = −∑ ∑  with 2
n nE γ=  , 

is proportional to 
1 1

2
Arg i xξ

π
 +  

 by using Riemann-Weil formula

b) The inverse of the potential inside 2
2 2( )x V x H−∂ + =  is proportional to the half-

derivative of  ( )
0

( ) n
n

N E H E E
∞

=

= −∑  , this is obtained by WKB analysis.

c) The factor ( )
0

( ) n
n

N E H E E
∞

=

= −∑  can be approximated by the sum 

( ) ( ) ( )smooth oscillatingN E N E N E= +  , the smooth part obeys an asymptotic law 

called Weyl’s law ,namely  1/ 2( ) ( )smoothN E O E ε+=  for any real and positive 
epsilon, the oscillating part can be approximated by truncation of the divergent 

Fourier series 
( )

2

sin log( ) 1

logn

x nn

n n

π

π

∞

=

+Λ∑
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d) The quotient of the two functional determinants  2( )Det E H−  and 2( )Det H−  

will be proportional ( for E >0 ) to the function 
1

2
i Eξ  +  

 , with 

2
2 2( )x V x H−∂ + =  and     

1/ 2
1

2 1/ 2

1
2 ( )

2

d
V N x

dx
π−  ≈ +  

 , by a similar analogy the 

quotient of  2
2( )Det E H+  and 2( )Det H  , will be proportional to the Riemann 

Xi-function  
1

2
Eξ  +  

 , this all comes from the Hadamard product for the 

Riemann Zeta function.
e)  In our method , if we write the Energies as  2

n nE k=  , then in the WKB 

approximation the allowed values of the momentum operator ˆ
d

p i
dx

→ −  are 

given by  
2 2

logn n
n

n
p

n

π πγ
λ

= ≈ ≈  , with  
1

0
2 niζ γ + =  

  ( and ‘n’ integer ) 

n Rγ∀ ∈ , the quantizied values of the momentum are the Riemann zeros, this is 
similar to the case of the infinite potential well ,where the momentum was 
quantizied and only the values np nπ=  n= 0,1,2,...  were allowed. A 

justification to this is the following, we have that  ( ) 2 ( )
C

dxp x n Eπ≈∫  if we use 

the mean-value theorem for the one dimensional integral  for our model 
| | 2 ( )n np l n Eπ≈  involving the Riemann Zeros the lenght of the orbits will be 

the logarithm of the primes log p   (plus repetitions) , from the Prime number 

Theorem lognp n n≈ so taking the logarithm the asymptotic for the allowed 

momenta is 
2

logn

n
p

n

π≈  for big ‘n’ this are precisely the asymptotics of the 

imaginary part of the Riemann zeros. Of course if we define the momentum of 
the system as p k E= =  , we can define the density of states as 

( )2

0

1 1
( )

2 2 n
n

d
E Arg ik E

k dk
ρ ξ ε δ γ

π

∞

=

 = + + = −  
∑      0ε →

In this case 
1 1

( ) ( )
2 2smoothN E N E Arg ikζ
π

 = + +  
 and the chaotic behaviour or 

the most important information for the system is encoded in the argument of the 
Riemann function on the critical line

f) Since the functional determinant ( )2Det E H−  is proportional to the Riemann 

Xi-function  
1

2
i Eξ  +  

 , and  †
2 2H H=  (Hermitian operator) then , there can 

be no zeros outside the critical line 
1

Re( )
2

s =

g) Once we have computed the Functional determinant by the Gelfand-Yaglom 
method , in the WKB approximation the energies can be obtained from the 

vanishing of the determinant  ( )2 0Det E H− =  , in one dimension this makes 

the problem a bit simpler since we only have to solve a differential equation to 

10



evaluate the determinant. Also in the WKB approximation the Energies can be 
obtained by the Bohr-Sommerfeld quantization condition in terms of a Non-

linear integral equation  
0

( ) ( )
a

dx E V x n Eπ− ≈∫  , with ( )E V a=  being the 

classical turning point of the potential.
h) In order to compute the Functional determinant by the Gelfand-Yaglom  method 

, we could use the WKB approximation to solve the differential equation as we 
did inside (12) , we have chosen the boundary condition (0) 0Ψ =   because if 
we had chosen to have an even potential  ( ) ( )V x V x= −  , then the 
Eigenfunctions would be Odd or Even making the Gelfand-Yaglom theorem a 
bit harder to apply, in the case of an even potential the initial conditions in (11) 
and (12) would have been ( ) 0Ψ −∞ =  and  ( ) 1x∂ Ψ −∞ =  , the other main reason 
is by the analogy of our problem to the infinite potential well that yields to the 

functional determinant equal to  
( )sin x

x
 and also has a Hadamard product .

i) The Hamiltonian 
2

2 2
( )

d
H H V x

dx
= = − +  may be regarded as the one 

dimensional analogue of the d-dimensional Laplace eigenvalue equation 
( ) ( )nu x u xλ−∆ =  with boundary conditions  0u =  on the boundary  M∂ , in this 

case we have the Weyl’s law ( ) / 2

( )
( ) lim 2

d

dE

N E
Vol M

E
π ∆

→∞
=  , for our particular 

case with the Smooth eigenvalue counting function  ( ) log
2 2

E E
N E

eπ π
 

≈    
 the 

dimension of our system is  1d ε= +  , due to the logarithmic term log E  , in 
this case the Volume of the Phase space of the Hamiltonian system 

2
2 ( )H H p V x= = + , after the substraction of the pole 1/ ε  is 

( ) log(2 ) 2.83787...Vol M eπ≈ =  the Eigenvalue counting function for big 

energies E behaves as 1/ 2 / 2( ) ( )N E O E ε+≈ , so it seems that our Hamiltonian 
model for Riemann Zeros respects the Weyl’s law for the distribution of the 
asymptotics of the Eigenvalues/Energies.

j) To evaluate the Trace of  ( ){ }( )f E Tr E Hδ= −  involving the Hamiltonian 

‘H’ , we can use the Riemann-Weil formula and the Semiclassical WKB 
approximation to obtain an implicit formula for the potential 

1/ 2
1

1/ 2

2 1
( )

2

d
V x Arg i x

dx
ξ ε

π
−  ≈ + +  

 , 0ε →  in this case the Hamiltonian will 

be compatible with the Riemann-Weil formula and its Eigenvalues will be the 
square of the Riemann Zeros. This Argument of the Xi function can be splitted 

into 3 terms 
( )

1 ( )
T

S T
ϑ

π
+ +  with  ( )( )/ 2( ) / 2sT Arg sϑ π −= Γ  and 

( )( )S T Arg sζ=  with  
1

2
s i T= +  0T > , we need to compute ALL the terms 

(the smooth and oscillating terms) in order to get an accurate expression for the 
inverse function of the potential  ( )V x

11



Of course all this aspects can be improved, for example the Quantization rule for 

energies can be set as  ( ) 2
4

j

C

p q dq n
µ

π
 

= + 
 

∫  with  jµ  a Maslov index , which will be 

different for every trajectory , also the WKB solution to the ODE inside (11) and (12) 
can be expressed by an infinite series of corrections  to the WKB solution of the 

differential equation in the form ( )
0

( , ) exp ( , )
n

n
n

z x i i z xφ
∞

=

  Ψ ≈ −  
  
∑   ,hence 

2

2
( ) ( , ) 0

d
V x z z x

dx

 
− + − Ψ = 

 
 and we will choose carefully these functions so the initial 

conditions  ( ,0) 0zΨ =  and  ( ,0) 1x z∂ Ψ =  are fullfiled. In this paper we will also give a 

derivation of the inverse 
1 1( ) ( )smooth oscillatingV x V x− −+ for the pontetial function, by applying 

the half derivative operator 4 Dπ   
d

D
dx

=  

NUMERICAL CALCULATIONS AND THE LINK BETWEEN THE 
RIEMANN-WEIL FORMULA FOR PRIMES AND THE DENSITY OF 
STATES OF OUR HAMILTONIAN H2

In this section we will explain why this method works, also we will compare our trace 
with the explicit formula of Riemann and Weyl relating a sum involving primes to 
another sum involving the imaginary part of the zeros.

o Why this method should  work ?:

Using the semiclassical approach we have stablished that the inverse of potential V(x) is 
related to the half-derivative of the eigenvalues counting function N(E) , for the case of 
the infinite potential well ( V=0 and L=1 ) the linear potential and the Harmonic 

oscillator, using the semiclassical WKB approach together with 
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
π− =

(Half)- Harmonic oscillator  
2( )

4

x
V

ω=     ( )
2

E
N E

ω
=          1 2

( )
E

V x
ω

− =     (19)

Linear potential   V kx=        
3/ 22

( )
3

E
N E

kπ
=               1( )

x
V x

k
− =     (20)

Infinite potential well  0V =    ( )
E

N E
π

=           1( ) 1V x− =        (21)

(We assume that in (19) (20) and (21) the potential ( )   0V x x= ∞ <  , there is an infinite 
wall at x=0 in all cases the Eigenfunction also satisfy that (0) 0 Ψ = )

12



In all cases and for simplicity we have used the notation  2 1m L= = =h  , here ‘L’ is the 
length of the well inside (21) , (19) and (20) are correct results that one can obtain using 
the exact Quantum theory , (21) gives 1 instead of the expected result  0V = , in order 
to calculate the fractional derivatives for powers of E we have used the identity 

1/ 2
1/ 2

1/ 2

( 1)

( 1/ 2)

k
kd E k

E
dE k

−Γ +=
Γ +

 [11] , a similar formal result can be applied to Bohr’s atomic 

model for the quantization of Energies inside Hidrogen atom 2

13.6
E

n
= − .

For the general case of the potentials  
   x 0

( )
     x<0

mCx
V x

 ≥
=  ∞

  with m being a Natural 

number our formula , 
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
π− =  predicts that the approximate number of 

energy levels below a certain Energy E will be (approximately) 

1
1 1

2

1
1

( ) .
1 34

2

m
m

C m
N E E

m
π

−
+

 Γ +  ≈
 Γ +  

 , see [11] for the definition of the half-integral for 

powers of ‘x’ . It was prof. Mussardo [10]  who gave a similar interpretation to our 

formula  
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
π− =  in order to calculate the Quantum potential for prime 

numbers, he reached to the conclussion that the inverse of the potential inside the 

Quantum Hamiltonian  
2

2
( )

d
V x H

dx
− + =  giving the prime numbers as 

Eigenvalues/Energies of H , should satisfy the equation  
1/ 2

1
1/ 2

( )
( ) 2

d x
V x

dx

ππ− =  , here 

( ) 1
p x

xπ
≤

= ∑  is the Prime counting function that tells us how many primes are below a 

given real number x , there is no EXACT formula for  ( ) 1
p x

xπ
≤

= ∑  so Mussardo used the 

approximate expression for the derivative given by the Ramanujan formula 
1/ 2 1/

1/ 2
1

( ) ( )

log

n

n

d x n d x

dx n dx x

π µ −∞

−
=

 
=  

 
∑   [10]  , where  ( )nµ  is the Mobius function , a number-

theoretical function that may take the values -1,0, 1  ( see Apostol [1] for further 
information ).

A formal justification of why the density of states is related to the imaginary part of the 

logarithmic derivative of  
1

2
izξ  +  

 can be given as the following, let us suppose that 

the Xi-function has only real roots , then in the sense of distribution we can write

2
0

' 1 1

2 2
n

n

n

a
i z

z iz

ξ
ξ ε γ

∞

=

 + =  + − 
∑              

'
Re ,n na s z

ξγ
ξ

 = = 
 

              (22)
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Here, 0ε →  is an small quantity to avoid the poles of (16) at the Riemann Non-trivial 

zeroes  { }nγ  ,taking the imaginary part inside the distributional  Sokhotsky’s formula 

1 1
( )i x a P

x a i x a
πδ

ε
 = − − +  − + − 

 one gets  the density of states  

1 1
( ) log ( )

2E n
n

g E m i E Eξ ε δ γ
π

∞

=−∞

 = ℑ ∂ + + = − −  
∑                 (23)

Integration with respect to E will give the known equation (for our problem) 
1 1

( )
2

N E Arg i Eξ
π

 = +  
 , a similar expression can be obtained via the ‘argument 

principle’ of complex integration  ( )
( )

1 '
( )

2 D E

N E z dz
i

ξ
π ξ

= ∫  , with D a contour that 

includes all the non-trivial zeros below a given quantity E , the density of states can be 
used to calculate sums over the Riemann zeta function (nontrivial) zeros, for example 
let be the identities

0

1 1
( ) '( )

2
f dsf s Arg is

γ
γ ξ

π

∞  = − +  
∑ ∫             

log

1

' 1 ( )

2
is n

n

n
iz e

n

ζ
ζ

∞

=

Λ − + =  
∑         (24)

Combining these both [6] we can prove the Riemann-Weil summation formula

1

( ) 1 ' 1
( ) 2 (0) log 2 (log ) ( )

2 2 4 2n

i n is
f f g g n dsf s

nγ
γ π

π

∞∞

= −∞

Λ Γ   = − − + +   Γ   
∑ ∑ ∫      (25)

With  ( ) ( )f x f x= −  and ( ) ( )g x g x= −  and  
0

1
( ) cos( ) ( )g y dx yx f x

π

∞

= ∫  , if we are 

allowed to put  cos( )f ax=  into (20) ,then the Riemann-Weil formula can be regarded 
as an exact Gutzwiller trace for a dynamical system with Hamilton equations 

2 p x= &          
V

p
x

∂= −
∂

&        
1 1

( )
2

n E Arg i Eξ
π

 = +  
    

1/ 2
1

1/ 2

( )
( ) 2

d n x
V x

dx
π− =    (26)

Then the Gutzwiller trace for this dynamical one dimensional system (x,t) is 

1

( )
( ) ( ) cos( log )smooth

n

n
g E g E E n

n

∞

=

Λ= + ∑  , for big E the smooth part can be 

approximated by  
log

( )
2smooth

E
g E

π
≈  . The sum involving the Mangold function  ( )nΛ  

is divergent, however it can be regularized in order to give the real part of  the 

logarithmic derivative of Riemann Zeta   
' 1

2
iE

ζ
ζ

 − +  
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o Numerical solution of Schröedinguer equation:

In order to solve our operator  
2

22
( )

d
V x H

dx
− + =  with boundary conditions 

(0) ( ) 0y y L= =   610L =  we need to calculate the potential 2 ( )V x  , first since 
1/ 2

1
2 1/ 2

2 1
( )

2

d
V x Arg i x

dx
ξ

π
−  ≈ +  

 we may use the Grunwald-Letnikov definition of 

the half-derivative to write the inverse of the potential in the form

1
2

0

1/ 22 1 1
( ) ( 1)

2 2
m

m

V x Arg i x m
m

ξ ε
πε

∞
−

=

    ≈ − + + −         
∑      (27)

Here ‘ε ’ is an small step used to define the fractional derivative and 
( 1)

( 1) ( 1)

n n

m m n m

  Γ +=  Γ + Γ − + 
 are the binomial coefficients , giving values of ‘x’ inside 

(27) we can compute the inverse of the potential 2 ( )V x , in order to get 2 ( )V x , we 

simply reflect every point  
1

2( , ( ))j jx V x−
 obtained in formula (27) across the line y x=  

to get the numerical values for the potential 2 ( )jV x  , we have solved numerically the 

Schröedinguer equation for 2 ( )V x  using this method to obtain

n 0 1 2 3 4
Roots2 199.7897 441.9244 625.5401 925.6684 1084.7142

Eigenvalues 198.8351 441.9101 625.5950 925.6398 1084.6789

The final step is to solve the initial value problem  ( )2 ( ) ( ) 0x zf x z y x−∂ + − =  with 

(0) 0zy =  and  
(0)

1zdy

dx
=  for 2( ) ( )f x V x= and for  ( ) 0f x =  (free particle) in order to 

obtain the functional determinant 
( )

2
0 ( )

( )1 1
1

2 2 ( )
z

n n z free

y Lz
i z

y L
ξ ξ

γ

∞

=

    + = − =         
∏   L → ∞

Although we have considerEd an operator in the form  2 ( )x V x−∂ + , there exists a 
Liouville transform of variables that converts any second order Self-adjoint operator 

( ) ( ) ( ) ( ) ( )
d dF

p u q u F u w u F u
du du

λ − + −  
 into an operator of the form  2 ( )x V x−∂ +  by 

using a new redefinition of the dependent and independent variables by usign the 
Liouville transform:

0

( )

( )

u

u

w t
x dt

p t
= ∫            ( ) ( )

2
1/ 4 1/ 4

2

( )
( ) ( ) ( ) ( ) ( )

( )

d q x
V x w x p x w x p x

dx w x
−= −    (28)
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And ( ) 1/ 4
( ) ( ) ( ) ( )x w x p x F xΨ = ,also the operator in the form 2 ( )x V x−∂ +  plus boundary 

condition is the easiest to work with , so we can apply the foundations of the Quantum 
mechanics to the case of the Riemann Hypothesis. In the final chapter of this paper we 
will calculate a ‘Toy model’ for the Smooth part of the potential V(x) by evaluating the 

half-derivative of the smooth part of the density of Energies  ( ) log
2 2

E E
N E

eπ π
 

≈    

CALCULATION OF THE POTENTIAL V(x) IN THE SEMICLASSICAL 
APPROXIMATION 

For big energies ‘E’ the number of Eigenvalues nE  less than E is given by the 

approximation  ( ) log
2 2

E E
N E

eπ π
 

≈    
 valid for big ‘E’ E > >1 , with 

0

1

!n

e
n

∞

=

= ∑  , we 

can express the logarithm as 
1

log( )
x

x
ε

ε
−≈  for some small ε  , now if we apply our 

formula  
1/ 2

1
1/ 2

2 ( )
( )

d N x
V x

dxπ
− ≈  to evaluate the potential , then we find for the smooth 

part of the potential    as 0ε →  with V(0)=0

( ) / 22 2 / 2

1
4 ( )

( )smooth

e A x B
V x

ε επ ε

π ε

−

−
−

≈     

2

2 2( ) 4
( )smooth

x B
V x e

A

εε ππ
ε

 +≈    
             (29)

With the constants   

3
2

1
2

A

ε

ε

+ Γ  =
 Γ +  

   and 
3

2 2
B

π = Γ =  
 . Unfortunately we do not 

know how to obtain a closed expression for (29) in the limit 0ε → , so in general this 
expression (29) will depend on the value of epsilon chosen to define the logarithm 
(basis e)  , this potential  given in (B.1) will be more accurate whenever x → ∞  and 

0ε →  for ‘x’  and epsilon being positive real numbers (for negative ‘x’ the potential is 
infinite due to the potential well at x=0 ) .

 By solving the Schröedinguer equation  for our potential 
2

2
2 2

2
4

( ) n

d x B
e E

dx A

εε ππ
ε

 Ψ +− + Ψ = Ψ   
, with the limit  2

lim 1n

n
n

E

γ→∞
=  and 

1
0

2 niξ γ + =  
 

so the energies of the Quantum Hamiltonian  

2

2 2 24
( )

x B
p e

A

εε ππ
ε

 ++    
 should be 

asymptotic to the square of the Riemann (non trivial) zeros . Since the Energies can be 
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seen as the inverse of the function ( ) log
2 2

E E
N E

eπ π
 

≈    
 (for our particular case of the 

RH) then ,these energies must be equal to  ( )
2 2

1

2 1

4
( ) ( )n

n
E f n N E

W ne

π−
−

= = ≈  , with 

1

1

( )
( )

!

n
n

n

n
W x x

n

−∞

=

−= ∑  being the Lambert W-function , let us note that the inverse of 

log
2 2

x x

eπ π
 
  

 , is exactly  ( )1

2 n

W ne

π
−  , this functin can be used to compute the 

imaginary part of the zeros up to certain accuracy. Since the main term of the potential 
2

2 2( ) 4
( )smooth

x B
V x e

A

εε ππ
ε

 +≈    
 is always increasing we can calculate its inverse , we 

can include ‘small’ corrections to this toy-model to include the influence of the 
distribution of the primes over the potential for the Riemann zeros, this will be 
discussed in the next section.

o Oscillating part of the potential :

In order to improve this result , we should also take into account the half-derivative of 

the oscillating part of the zeros  
1

arg (log )
2

i s O sζ  + =  
 , if we could prove that 

1/ 2 1/ 2

1/ 2 1/ 2

1 1
arg log

2 2 2

d d x x
i x

dx dx eπ π π
  + <<<        

 for x → ∞ , or that the half derivative of 

1
arg

2
i xζ  +  

 tends to 0  for x → ∞  , this would make our approximation better for 

big Energies. For the boundary conditions we set (0) 0 ( )Lφ φ= = , with L will depend 

on epsilon ( ) ( )A B
L L

εε
ε π

−= =  , since for this value the potential will become almost 

infinite , teh condition  (0) 0φ =  comes from the fact that for negative ‘x’ the potential 
is ∞  (infinite potential well) .

For the oscillating part proportional to 
1

arg
2

i xζ  +  
, we can use the Dirichlet 

generating function on the critical line  
1

2
u i s= +    

2

( )
log ( )

logu
n

n
u

n n
ζ

∞

=

Λ= −∑  , if we 

expand the function i sn−  into a Taylor power series in the variable s  and apply 
fractional differentiation term by term inside this Taylro series , the contribution of the 
oscillating part to the inverse of the potential can be described by the imaginary part of 
a double series over ‘n’ and ‘k’
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1
1 2

2 0

1
2 ( ) ( ) 2

( ) log ( )
1!log 1

2

kk
k

osc
n k

k
n i

V x n s
kkn nπ π

−∞ ∞
−

= =

 Γ + Λ −  ≈ −
− Γ +  

∑ ∑        (30)

With 
log      

( )
0       otherwise

kp n p
n

 =
Λ = 


   Of course, the series involving the Mangoldt function 

will be divergent so we must truncate it ,for example we would take only the first 50 
primes and prime powers to get a finite expression inside (30) , this expression (30) 
serves as correction to the smooth part of the potential obtained from the half-derivative 

of  ( ) log
2 2

E E
N E

eπ π
 

≈    
, the smooth part of the density of Eigenvalues , of course we 

can not expect that a simple model involving just the smooth part of the Zeros can work 
since the corrections due to the oscillating part of the N(E) become important whenever 
E → ∞  due to the somehow chaotic distribution of the zeros and primes, this model 
with the half derivative of  ( ) ( )smooth oscN T N T+  is the best solution of the Riemann 
Hypothesis in the form of the solution of an inverse spectral problem, where we recover 
the solution of the potential from the Eigenvalue staircase.

With all these corrections (29) and (30) we could compute also the functional 
determinant det( )E H+  by solving a linear ODE , plu certain conditions

( )2 ( ) ( ) ( ) 0x smooth osc zV x V x E F x−∂ + + + =    (0) 0zF =   (0) 1x zF∂ =    (31)

By the Gelfand-Yaglom method this functional determinant will be proportional (upto a 

constant) to 
1

2
Eξ  +  

SPECTRAL THETA FUNCTION AND THE INVERSE OF THE 
POTENTIAL V(x).

For an Hamiltonian operator, appart from defining the density of Eigenvalues 

( )
0

( ) n
n

E E Eρ δ
∞

=

= −∑  , we can define also two important spectral functions

{ } ( )ˆ

0

( ) exptH
n

n

t Tr e tE
∞

−

=

Θ = = −∑       ( )
2 1

2 2
0 0

1 1
( )

( )
tE s

s
n

n

dt
e t t

s tE E

∞∞
− −

=

= Θ
Γ+

∑ ∫    (32)

The first function is defined for Re( ) 0t > , the second will converge for some 

0Re( )s s>  real number, from the second function inside (32) and if the Operator admits 
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a Hadamard product expansion in the form  
2

0

1
n n

E

E

∞

=

 
+ 

 
∏  then we can define the 

Functional determinant of the Operator formally

( ) ( )2 2

0 0

ˆ(0, ) (0,0) log det log logs s n n
n n

Z E Z H E E E
∞ ∞

= =

−∂ + ∂ = = + −∑ ∑   (33)

For our problem, we should find a suitable Hamiltonian 2 ( )H p V x= + , whose energies 

are the square of the imaginary part of the Riemann Zeros  2
n nE γ=  , in this case the 

functional determinant defined in (A.2) is the Riemann Xi function 
1

2
sξ  +  

, this is 

deduced from the Hadamard product  
2

2
0

1 1
1

2 2n n

E
Eξ ξ

γ

∞

=

     + = +         
∏  , the Riemann 

Hypothesis is equivalent to the fact that all the roots of this product are purely 
imaginary, to obtain the Hamiltonian ‘H’ , we replace the spectral Theta function 
defined into (32) by its semiclassical counterpart

( ) 2

0 0 0

1
( ) exp ( ) exp( ( ))

2
st

n
n

t tE s dtN t e dq dp tp tV q
π

∞ ∞ ∞∞
−

= −∞

Θ = − = − ≈ − −∑ ∫ ∫ ∫  (34)

1
2 ( )

0 0

1 1 1 ( )
exp( ( ))

2 2 2
tV q tr dV r

dq dp tp tV q dqe dre
drt tπ π π

∞ ∞ ∞ ∞ −
− −

−∞ −∞

= − − = =∫ ∫ ∫ ∫   (35)

Here N(T) is the function that counts the number of Eigenvalues on the interval (0, )T , 

for the case of the Riemann Hypothesis 
1 1

( )
2

N T Arg i Tξ
π

 = +  
 for positive ‘T’, the 

branch of the logarithm is chosen in order to get  (0) 0N = , this function is an step 
function so its derivative will only exists in the sense of distribution.

In the last equation we have made the change of variable  1( )q V r−= , the lower limit in 
the variable ‘q’ can be set to 0 if we put a hard wall (infinite potential wall) at 0x =  so 
the potential becomes infinite for 0x < . To obtain the final expression for the inverse of 
the potential V(x) we equate both expression , for the Theta function, its spectral 
expansion and its semiclassical approximation

1

0 0

( ) ( )
2

st sts
s dtN t e dtV t e

π

∞ ∞
− − −− = −∫ ∫   so  

1

0 0

2 ( ) ( )st sts dtN t e dte V tπ
∞ ∞

− − −=∫ ∫   (36)

The first term in the second equation with (0) 0N = may be interpreted as the Laplace 

transform of the fractional derivative  
1/ 2

1/ 2
2 ( )

d
N x

dx
π  ,this is obtained from the 

fractional derivative of the inverse Laplace transform for any function  
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1
( ) ( )

2

c i
st

c i

D f t dsF s e s
i

α α

π

+ ∞

− ∞

= ∫      kt ktD e k eα α=    Rα∀ ∈     (37)

if two laplace transform are equal { } { }( ) ( )L f t L g t= , then so are the two functions 

equal  ( ) ( )f t g t=  , so we have that if we want that the spectral approximation and the 
semiclassical approximation for the Theta function to be almost equal then the potential 

inside our Hamiltonian must satisfy  
1/ 2

1
1/ 2

2 ( ) ( )
d

N x V x
dx

π −=  , this is precisely the 

result for the potential obtained from our Bohr-Sommerfeld quantization condition , 
once we solve this functional equation to obtain numerical values for the potential 

( )V x , then we can evaluate the semiclassical Theta function and also the series 
analogue to the Riemann Zeta function but taken over the Energies of the Hamiltonian

( )
( )2 2

3/ 22 2
0 0 0 0

1 1
exp ( ) ( )

2 ( )
s tE s tE

s
n

n

dt dt
t e dq tV q t e t

t tsE E π

∞ ∞ ∞∞
− −

=

= − = Θ
Γ+

∑ ∫ ∫ ∫     (38)

Now,  if we set for the inverse of the potential using the Argument of the Riemann Xi 

function on the critical line 
1/ 2 1/ 2

1
1/ 2 1/ 2

2 1
2 ( ) ( )

2

d d
N x Arg i x V x

dx dx
π ξ

π
− = + =  

 , then 

we have that ( ) 2

0 0

1
exp exp( ( ))

2n
n

tE dq dp tp tV q
π

∞ ∞∞

= −∞

− = − −∑ ∫ ∫  , then if we use (32) or (38) 

we can evaluate the sum of Eigenvalues  2
n nE γ=   , ( )2 2

0 0

s s
n n

n n

E E E
∞ ∞− −

= =

+ −∑ ∑  (the limit 

2 0E →  is assumed on the second summand ) , from this we can calculate the logarithm 

of the Hadamard product for the Riemann Xi-function 

2

0

log 1
n n

E

E

∞

=

   +     
∑  by applying 

the operator  
d

ds
−  at s=0 , this last sum involving the logarithm is just 

1 1
log log

2 2
iEξ ξ   + −      

 , since the Eigenvalues of the Hamiltonian are all real and 

positive each factor 

2

1
n

E

E

 
+  

 
 becomes zero only  when  nE iγ= ±  , so the Riemann Xi 

function must have only purely imaginary zeros.

We may wish to compare this result with the exact result due to the application of the 
Riemann-Weil zeta function

{ } ( ) ( )

2

ˆ 2 / 4

0 0

2

1

1
exp exp ( ) 2

2

1 ' 1 log ( ) log
2 exp

2 4 2 4

sH s
n

n

sx

n

Tr e s dq sV q e
s

ix n n
dx e

ss n

γ
π

π π
π

∞∞
−

=

∞ ∞
−

=−∞

= − ≈ − = +

 Γ Λ − + − −   Γ    

∑ ∫

∑∫
     (39)
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if we equate  again the spectral sum and the double integral over the phase space (p,q) 
inside (39) and apply term by term Laplace inversion then we get the same result, that 
the half-derivative of  N(E) is proportional to the inverse of the potential V(x) , but we 

must include both the smooth and the oscillating part 
2 1

2
Arg i xζ

π
 +  

 of the 

eigenvalue staircase. So if both Theta functions are equal then ( ) ( )WKB spectralt tΘ = Θ  and 
the Zeta-regularized determinants will be also equal  , then for our Hamiltonian

( )
( )

( )
( )

2 1/ 2
1

1/ 22

det ( )1/ 2 ( )
        ( ) 2

1/ 2 det ( )

x

x

s V xs d N x
V x

dxV x

ξ
π

ξ
−

− ∂ ++
= =

−∂ +
    (40)

With the change of variable s iz→  inside (40)  we may prove that the Riemann Xi-
function is proportional to the functional determinant of a certain Hamiltonian 

1/ 2
† 2 1

1/ 2

( )
( )   ( ) 2

d N x
H H p V x V x

dx
π−= = + =    

( )
( )

( )
( )

1/ 2 det
        

1/ 2 det

iz z H

H

ξ
ξ

+ −
=

− (41)

We have proved our Hamiltonian by using two differente methods, Bohr-Sommerfeld 
quantization and zeta regularization for the Functional determinants

o Riemann-Weil trace formula functional equation and more:

Since the Riemann Xi-function can be expressed as a functional determinant on the 
critical line we can write the density of states as

( ) ( )2

0

1 1
log det

2 2n
n

d d
m E i H E Arg ik

dE k dk
ε πδ γ ξ

∞

=

 − ℑ + − = − = +  
∑    (42)

Here, we have used again Shokhostky’s formula  ( ) 1 1( ) ( )x i x iP xε πδ− −+ = − +  to get the 

delta function, the sum over delta functions on the left is the spectral density of states, 
the contribution of the log of primes and prime powers can be evaluated on the 
momentum variable E k=  as follows 

1 1 log 1 ' 1

2 2 2 4 2 2 2 2 2

ik i i
e ik e k k

k k k k k

ζ π π πδ δ
ζ

Γ       ℜ + − + ℜ + + − + +       Γ       
    (43)

If we make the change of variable  
1

2
k i s = − −  

 inside (43) and set 

( ) ( )0is i isδ δ= = −  , which is still valid on { }\ 0,1C  we get the equality

( ) ( )' 1 ' 1 ' 1
0 1 log

2 2 2 2

s s
s s

ζ ζ π
ζ ζ

Γ Γ −   = + − + + −   Γ Γ   
   (44)
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Integration over ‘s’ with integration constant equal to 
log

2

π
 yields to the functional 

equation for the Riemann Zeta function in the symmetric form 

( ) ( )/ 2 (1 ) / 21
1

2 2
s ss s

s sπ ζ π ζ− − −−   Γ = Γ −      
 , so we have proved in two ways how the 

Riemann Xi function  ( ) (1 )s sξ ξ= −  can be expressed as the quotient of 2 functional 

determinants   
1

det (1 )
4

H s s + − −  
 and  

1
det

4
H +  

 , with 2 ( )H p V x= +  , and the 

potential is defined implicitly by 
1/ 2

1
1/ 2

( )
  ( ) 2

d N x
V x

dx
π− =  and in general 

1
det (1 )

( ) 4
1(0) det
4

H s s
s

H

ξ
ξ

 + − −  =
 +  

 . In case ( )21 1
det

2 2
iz A iz H zξ    + = + −      

 with the 

function ‘A’ having imaginary zeros (RH false) then whenever we evaluate the 

Argument  
1

2
Arg izξ  +  

 a term proportional to 
1

log
2

d
m A iz

dz
 ℑ +  

 , and inside the 

Functional equation for the Riemann Zeta function should appear to extra terms 
(1 )   ( )A s A s−  but we do not find these terms on the Riemann-Weil trace formula

o Evaluation of the Eigenvalue Staircase ( )N E :

In order to evaluate the density of states ( )2 2

0

( ) n
n

E kρ δ γ
∞

=

= −∑  with k E=  we can use 

directly the Riemann-Weil formula

( )/ 2 2
1

1 log 1
( ) ( ) cos log     ( ) log    

2 4smooth smoothr
r p

p E
E d E rk p d E

p
ρ

π π π

∞

=

 
= − ≈    

∑∑ (45)

The last expression is valid whenever k → ∞ , unfortunately the second sum over the 
‘obits’ (logarithm of primes and prime powers ) is DIVERGENT, so for any energy we 
would have that ( ) 0Eρ = , to overcome this difficulty we could use the Riemann-Siegel 
formula [1] so

( )( )
1/ 4

1

cos ( ) log1 1
( ) 2    

2

U
i k

n

k k n
Z k ik e O k

kn
ϑ ϑ

ζ
=

−   = + = + → ∞      
∑     (46)

1 log 1
( ) log log

4 2 2 2 2 8

ik k k k
k m O

e k

π πϑ
π

     = ℑ Γ + − ≈ − +          
   (47)

With the aid fo (46) (47) and the formula for the logarithm (x >0 ) 
2 1

0

1 1
log( ) 2

2 1 1

n

n

z
x

n z

+∞

=

− =  + + 
∑ one could compute then 

1 1
arg ( )

2
ik S kζ

π
 + =  

 for big 

‘k’ and hence the Eigenvalue Staircase is given by 
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( ) 1 1
( ) 1 arg   

2

k
N E ik k E

ϑ ζ
π π

 = + + + =  
, so with the Riemann-Siegel formula, we 

can evaluate the oscillating part of ( )N E  for big energies up to certain degree of 
accuracy.

The Riemann-Siegel formula, has a possible physical interpretation , if the actions of 
our Quantum system are given by ( ) logS E k p=  , by using the Fundamental theorem 

of the arithmetic , for integer ‘n’ log log   ,i i i i
i

n p p Nα α= ∈∑  , so the log n  inside 

(46) can be interpreted as ‘pseudo orbits’ or linear combination of the classical orbits, 
with these formulae (45) and (46) one could evaluate the inverse of the potential 

1/ 2
1

1/ 2

( )( )
    ( ) 2 1

S xd x
V x

dx

ϑπ
π π

−  
= + +   

APPENDIX A: FACTORIZATION OF A SECOND ORDER LINEAR 
DIFFERENTIAL OPERATOR INTO A PRODUCT OF TWO 
DIFFERENTIAL LINEAR OPERATORS.

From the theory of the Ajoint linear operators, is easy to prove that any second order 
differential linear operator 2 ( )x V x−∂ +  can be expressed as the product 

( )
d

L A x
dx+ = +        ( )

d
L A x

dx− = − +      so   2 ( )x V x L L+ −−∂ + =  and    ( ) †
L L+ −=   (A.1)

Where the potential V(x) is related to the function ‘A’ by the Ricatti equation 
2( ) ( )

dA
V x A x

dx
= +  , also the energies of  2 ( )x V x−∂ +  will be Real (since the operator is 

Hermitian) and positive since

2 2 2| | | | | || || 0x xV L L L L V φφ φ φ φ φ φ+ − − −−∂ + = = = −∂ + ≥       (A.2)

Formula (A.2) tells us that for 1-D systems ALL the energies of the Hamiltonian will be 
Real (since it is a Hermitian operator) and positive, then it can not exist an Unbounded 
Hamiltonian operator in one dimension , for the case of our Hamiltonian whose 
Energies are the square of the imaginary part for the non-trivial zeros of the Riemann 
Zeta function  2

2 2( )x V x H−∂ + =   , 2
n nE γ=  then we have the auxiliar Eigenvalue 

equation  ( ) ( ) ( ) ( )
df

L f A x f x i f x
dx

γ± = ± + = ±  . If we introduce the cahnge of variable 

inside (A.1)  logx u=  and put 
1

2
A =   the first term becomes the Theta operator 

u

d
u

du
Θ =  , if we also multiply all by  i− h  , we find that  i L+− h  is just the Berry-

Keating Hamiltonian   
1

2BK

d
i L H i u

du+
 − = = − +  

h h  whose Eigenvalues are the 
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imaginary parts of the Riemann Zeta  zeros. The Theta operator appear inside the Berry-
Keating Hamiltonian because it is conjectured that the imaginary part of the zeros can 
be obtained by the quantization of a dynamical system that violates time-reversal 
symmetry so  ( , ( )) ( , ( ))u ut u t t u tΘ ≠ Θ − − , however for the square of the Berry-Keating 

(classical) Hamiltonian  2 2 2
bkH x p=  the time reversal symmetry is conserved under the 

change t t→ − , the commutator of the 2 ladder operators involved in our definition of 

the Hamiltonian is  [ ], 2
dA

L L
dx+ − =  it only vanishes for the case of the A being a 

constant function of ‘x’ , for example in a Berry-Keating model.

The relation to our model is the following, let be a first order differential operator D  , 

whose spectrum is  
1

( ) 0
2

spec D z C izζ
  = ∈ + =    

 , also  the operator D  minus ½ is 

skew-Hermitian  
†

1 1

2 2
D D   − = − −      

 , then its square (Hamiltonian) 
2

1

2
H D = − −  

 

should be equivalent to Our Hamiltonian operator  
2

2
( )

d
H V x

dx
= − +

2 † 2

2

1 1 1
. ( ) ( ) ( )

2 2 2

d d d
H D D D V x A x A x

dx dx dx
        = − − = − − = − + = + − +                

  (A.3)

So this operator  D  , must be of the form  
1

( )
2

d
D A x

dx
≈ + +  , here ‘A’ is related to our 

potential 
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
π− ≈  by a Ricatti equation  2( ) ( )

dA
V x A x

dx
= +  , if we make 

the change of variable logx u=  we have a Berry-Keating Operator  
1

(log )
2

df
u A u

du
+ +  

for the Riemann Zeros, so we believe that Berry’s formalism and our are equivalent,
however we have introduced a more deep analysis and have found our Hamiltonian 
operator by solving an inverse spectral problem for the Eigenvalue staircase.

In order to recover the function ( )A x  by solving Ricatti’s equation, we may make the 

change of variable 
'

( )
u

A x
u

= , now Ricatti equation becomes the second order linear 

differential equation  ''( ) ( ) ( ) 0u x V x u x− =  if we use the WKB ansatz for the solution 
we find the functional dependence involving  ( )A x  and ( )V x

1 2

0 0

1 ( ) 1
( ) ln exp exp ( ) exp ( )

4 ( )

x xd dV x
A x B dt V t B dt V t

dx dx V x

     ≈ + − −    
     

∫ ∫     (A.4)

Here 1 2,B B R∈  are constants obtained by solving the linear ODE  ''( ) ( ) ( ) 0u x V x u x− =
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