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 ABSTRACT: We give a possible interpretation of the Xi-function of Riemann as the 

Functional determinant   det E H for a certain Hamiltonian quantum operator in 

one dimension  
2

2
( )

d
V x

dx
  for a real-valued function V(x) , this potential V is 

related to the half-integral of the logarithmic derivative for the Riemann Xi-function, 
through the paper we will assume that the reduced Planck constant is defined in units 
where 1 and that the mass is 2 1m 
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RIEMANN FUNCTION AND SPECTRAL DETERMINANTS

The Riemann Hypothesis is one of the most important open problems in mathematics, 

Hilbert and Polya [4] gave the conjecture that would exists an operator 
1

2
iL with  

†L L so the eigenvalues of this operator would yield to the non-trivial zeros for the 
Riemann zeta function, for the physicists one of the best candidates would be a 

Hamiltonian operator in one dimension  
2

2
( )

d
V x

dx
  , so when we apply the 

quantization rules the Eigenvalues (energies) of this operator would appear as the 
solution of the spectral determinant   det E H , if we define the Xi-function by  
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, then RH (Riemann Hypothesis) is equivalent to the fact 

that the function 
1

2
iE   

 
has REAL roots only , and then from the Hadamard 

product expansion [1] for the Xi-function , then 

1
2

det( )
(1/ 2

iE
E H





  
    is an spectral 

(Functional) determinant of the Hamiltonian operator, if we could give an expression 
for the potential V(x) so the eigenvalues are the non-trivial zeros of the zeta function, 
then RH would follow, we will try to use the semiclassical WKB analysis [8] to obtain 
an approximate expression for the inverse of the potential.

Trough this paper we will use the definition of the half-derivative 1/ 2
xD f and the half 

integral 1/ 2
xD f , this can be defined in terms of integrals and derivatives as

1/ 2

1/ 2
0

( ) 1 ( )

(1/ 2)

xd f x d dtf t

dx dx x t

             

1/ 2

1/ 2
0

( ) 1 ( )

(1/ 2)

xd f x f t
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     (1)

The case 3/ 2
xD f we can simply use the identity   3/ 2 1/ 2

x x

d
D f D f

dx
 , these half-integral 

and derivative will be used further in the paper in order to relate the inverse of the 
potential V(x) to the density of states g(E) that ‘counts’ the energy levels of a one 
dimensional (x,t) quantum system.

o Semiclassical evaluation of the potential V(x) :

Unfortunately the potential V can not be exactly evaluated, a calculation of the potential 
can be made using the semiclassical WKB quantization of the Energy

( ) 1
3/ 2

0 0

( )
2 ( ) 2 ( ) 2

a a E E

x

dx dV x
n E E V x dx E V D

dV dx
 

 
  

      
 

       (2)

Here we have introduced the fractional integral of order 3/2 , for a review about 
fractional Calculus we recommend the text by Oldham [11] for a good introduction to  
fractional calculus , a solution to equation (2) can be obtained by applying the inverse 
operator 1/ 2

xD on the left side to get

1/ 2
1

1/ 2

( )
( ) 2

d n x
V x

dx
                

1/ 2
1

1/ 2

( )
( ) 2

d g x
V x

dx





      ( )
dn

g x
dx

      (3)

Here n(E) or N(E) is the function that counts how many energy levels are below the 

energy E , and g(E) is the density of states  
0

( ) ( )n
n

g E E E




  , for the case of 

Harmonic oscillator ( )
E

N E


 so using formula (2) and taking the inverse function we 
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recover the potential   
2 2

( )
4

x
V x


 ,which is the usual Harmonic potential for a mass 

2 1m  a similar calculation can be made for the infinite potential well of length ‘L’ 
with boundary conditions on [0, ) to check that our formula (3) can give coherent 
results

In general, g(E) is difficult to calculate and we can only give semiclassical 
approximations to it via the Gutzwiller Trace formula [8] , for the case of the Riemann 
Zeta function , N(E) can be defined by the equation 

1 1
( )

2
N E Arg iE
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So, in this case the Potential V(x) inside the one dimensional Hamiltonian operator 
whose energies are precisely the imaginary part of the Riemann zeros is given implicitly 
by the functional equation

1/ 2 1/ 2
1

1/ 2 1/ 2

1 ' 1 1 ' 1
( )

2 2RH

d d
V x ix ix

dx dxi i

 
  

 


 

                     
          (5)

1 ( )RHV x is the inverse of V(x) , taking the inverse function of formula (5) we could 
recover the potential (at least numerically).

Using the asymptotic calculation of the smooth density of states , we could separate 
formula (4) into an oscillating part defined by the logarithmic derivative of the Riemann 
zeta function and a smooth part whose behaviour is well-known for big ‘x’

 
1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2

1 ' 1 1 ' 1 1
log

2 2

d d d
ix ix x x x c

dx dx dxi i
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 , Using Zeta regularization , as we did in our previous paper [6] we can expand 

the oscillating part of formula (6) into the divergent series 

1/ 2 1/ 2

1/ 2 1/ 2
2

1 ' 1 1 ' 1 ( )cos( log / 4)
2

2 2 logn

d d n x n
ix ix

dx dxi i n n
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( )n is the Von-Mangoldt function that takes the value log(p) if  mn p for some 
positive integer ‘m’ and a prime p and 0 otherwise , so the last sum inside (7) involves a 
sum over primes and prime powers.

Then , using (3) we have found a relationship between a classical quantity , the potential 

V(x), and the density of states 
0

( ) ( )n
n

g E E E




  of a one dimensional dynamical 

system, the problem here is that g(E) can not be determined exactly unless for  trivial 
Hamiltonians (Harmonic oscillator, potential well ) the best evaluation for g(E) would 



4

come from the Gutzwiller Trace  [8] , some people believe [4] that a possible proof for 
the Riemann Hypothesis would follow from the quantization of an hypothetical 

dynamical system whose dynamical zeta function is proportional to 
1

2
iE   

 
to the 

spectral determinant of this dynamical system is   ( ) 1
det

2
iN EE H e iE     

 
, in this 

simple case the periodic orbits of the dynamical system are proportional to  log mp for 

m positive integer and ‘p’ a prime number, in this case the Quantization of the 
Hamiltonian ‘H’ would yield to the imaginary part of the non-trivial zeros, these zeros 
then would appear to be eigenvalues (energies) of H , since H is self-adjoint /Hermitean 
this energies would be all REAL and all the non-trivial zeros would be of the form 
1

2
it   t R , in this case the approximate Gutzwiller Trace would be of the form

1 1
( ) ( ) log

2smoothg E g E m iE
E




           
   (8)

Here  
1

( ) log( )
2smoothg E E


 ,  
1

2
s iE  this contribution is well-known , for big 

energies E this is the main contribution to the density of states g(E) , the part involving 
the logarithmic derivative inside (8) is the oscillating part of the potential giving the 
zeros, if we combine (5) and (8) we can obtain an expression for the inverse of the 

potential V(x) , then solving the Hamiltonian 
2

2
( )

d
H V x

dx
   with the potential given 

by formulae (5) and (6) we could obtain approximately the imaginary parts of the non-
trivial zeros. If we used the EKB quantization condition (Quantum chaos) 

4C

pdq n


    , then formula (3) becomes 
1/ 2

1
1/ 2

( ) 2 ( )
4

d
V x n E

dx

    
 

, so inside 

the inverse of the potential an extra term of the form 
4x


, here μ is a extra 

geometrical constant that appears in the semiclassical EKB quantization.

o Numerical calculations of functional determinants using the Gelfand-Yaglom 
formula :

In the semiclassical approach to Quantum mechanics we must calculate path integrals of 

the form    1

det
H

V

D e
H

    and hence compute a Functional determinant, one of 

the fastest and easiest way is the approach by Gelfand and Yaglom [2] , this technique is 
valid for one dimensional potential and allows you calculate the functional determinant 
of a certain operator ‘H’ without needing to compute any eigenvalue, for example if we 
assume Dirichlet boundary conditions on the interval [0, )
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Here the function   ( ) ( )z L is the solution of the Cauchy initial value problem     

2
2 ( )

2
( ) ( ) 0z

RH

d
V x z x

dx

 
     
 

          ( ) (0) 0z         
( ) (0)

1
zd

dx


        (10)

For our Hilbert-Polya Hamiltonian , the imaginary part of the non-trivial zeros would 
appear as the solution of the eigenvalue problem  nH E  so  n nE  (imaginary part 

of the Riemann zeros ) with the boundary condition

(0) ( ) 0L      L       
1/ 2

1
1/ 2

2 1 ' 1
( )

2RH

d
V x e ix

dxi









        
   

          (11)

Since 
1 1

( )
2

N E Arg iE


   
 

then (0) 0N  , also the Riemann Xi-function is an 

even function because ( ) (1 )s s   ,  
1

2
s iz  , another possible Dirichlet boundary 

conditions are ( ) ( ) 0L L    as L  , this is equivalent to the assertion that  

2 ( )L R , in QM  the eigenfunctions must be square-integrable  
2

( )dx x




  , then 

we could use  the Gelfand-Yaglom theorem to evaluate the spectral determinants so for 
our Hamiltonian operator H we find the formula  

   
 

( ) ( )

(0) (0)

1
det det ( ) ( )2

det( ) det( ) 1/ 2 ( ) ( )

z ziz
H z H z L L

H H L L


 

  


            L  (12) 

the functions ( ) ( )z x  defined in (12) satisfy the initial value problem 

2
( ) ( )

2
( ) ( ) ( ) ( ) 0z zd
H z x V x z x

dx
   

      
 

      ( ) (0) 0z       
( ) (0)

1
zd

dx

 

        (13)

If we take the logarithm inside the Gelfand-Yaglom expression for the functional 
determinants [2] we can also get an expression for the spectral zeta function of 
eigenvalues  for integer values of ‘s’ 

    1
2

1

det det ( 1)
log log ( )

det( ) det( )

n
n

H
n

H z H z
n z

H H n






  
  with 

0

1
( )Hs

n n

s






 , for the 

case of the Riemann Xi-function , if RH is true then we should have that the Taylor 

expansion of  
1 1

log log
2 2

z        
   

can be used to extract information about the
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1
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n n




 involving the imaginary parts of the Riemann zeros , in general these 

sums 
0

1
k

n n




 can be evaluated by numerical methods so we can compare the Taylor 

series of the logarithm of Xi function near x=0 and these sums to check the validity (at 
least numerically ) of Riemann Hypothesis. The condition for the functional 
determinant of  the self-adjoint operator   1 1H im H i m  to be proportional to the 

function 
2

2
1

1
1

2 n n

x
x







      
   

 must be imposed in order to ensure that ALL the zeros 

of the Riemann Zeta function are real , for example for the hyperbolic sine  

2 2
1

sinh( ) 1
n

x
x x

n 





   
 

 ,  2 2
nE n  Energies of the infinite potential well of 

length 1 , all the roots are purely imaginary , this can be viewed as a Riemann 
Hypothesis for the hyperbolic sine function , another example is the cosine function 

( ) cos
x

d x



   
 

, whose roots are precisely the energies of the  Quantum harmonic 

oscillator  
1

2nE n    
 

, and the density of states is defined by the Poisson 

summation formula    
2

( ) ( 1)
2

inx
n

n n

x n g x e

 

 

 

      
 

 

GENERALIZATION TO A HAMILTONIAN WHOSE ENERGIES ARE 
THE SQUARE OF THE IMAGINARY PART OF THE RIEMANN NON-
TRIVIAL ZEROS

We can generalize these results to the case of a Hamiltonian whose Energies are just the 
square of the imaginary part of Riemann zeros 2

n nE  , in this case the Energy 

counting function is given by 
1 1

( )
2

N E Arg i E


   
 

(since now we are counting 

squares of the Riemann zeros), using the same reasoning we did in (5) to get the inverse 

of the potential , for this Hamiltonian operator 2
2 2( )x V x H  

2
2

2x

d

dx
    we get

1/ 2 1/ 2
1
2 1/ 2 1/ 2

1 ' 1 1 1 ' 1 1
( )

2 24 4

d d
V x i x i x

dx dxi x i x

 
  

 


 

                     
   (14)

In this case the functional determinant of this Hamiltonian should be

   
 

2 0
2

02

0

( ) 1/ 2det
1

det( ) 1/ 2

n
n

n n
n

n

E z i zH z z

H
E



 











   
    

 





    z > 0   (15)
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In this case the Hamiltonian would be bounded so 2
2 0 199.750490..H   since we 

are dealing with 1-D potential the functional determinant inside (15) can be calculated 
using the Gelfand-Yaglom Theorem and it will be equal to

  ( )
2

( )
2

det ( )

det( ) (0)

z

z

H z L

H

 



with        2 ( )
2 ( ) ( ) 0z

x V x z x         (16)

Plus the initial value conditions  ( ) (0) 0z  and  
( ) (0)

1
zd

dx


 .

As a toy model of this method , let be the Sturm-Liouville problem 
2

2

( )
( )n

d y x
E y x

dx
 

with boundary conditions (0) (1) 0y y  , this problem can be easily solved to prove 
that the Energies and the functional determinant are the following 

2 2
nE n       1, 2,3,...n      

 
2 2

1

sin
1

n

x x

nx 





   
 

        (17)

If we use the expansion of the cotangent plus the Sokhotsky’s formula

1 1
( )i x P

x i x



       

         
2 2 2 2

1

cot( ) 1 1

2 2 reg
n

x

x x x n i 





 
     (18)

The factor i is introduced in order (18) to be regular at the points 2 2n  for any positive 
integer ‘n’ bigger than 1 if we take the imaginary part inside (18) we have that  

 2 2 2
2

1

1 cot( ) 1

2 2 reg n

x
mg x n

x x
 







 
     

 
   making the substitution x E the last 

term is just the derivative of  N(E) in the case of the Infinite potential well so in formal 
sense (theory of distributions) one expects that the number of eigenvalues of the 

problem  
2

2

( )
( )n

d y x
E y x

dx
  is given by the following  formal formula

1 sin
( )

reg

E
N E Arg

E
 

   
 

. Here ‘reg’ means that we should replace the factor  

  1
x a

 (singular at the point a) by the distribution    1
x i a   with  0    , hence 

one could hope that the same would be valid for the Riemann Xi-function , so if we 
repeat our same argument for the Riemann Hypothesis we find

1 1
( )

2 reg

N E Arg i E


   
 

      
2

0

' 1 1

2 2
n

nreg n

a
i x

x ix


  





      
    na R     (19) 
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Another more complicate example is the differential equation  
2

2
0n

d y dy
x y

dx dx
  

with the boundary conditions (1) 0y  and with a solution bounded as 0x  , the 
equation for the Eigenvalues is given by the square of zeros of the Bessel function 

0 ( ) 0nJ   , the Eigenvalue counting function is then   0

1
( ) ( )

reg
N E Arg J E


 , this 

is another example of how the Eigenvalues of certain self-adjoint operator are related to 
the roots of a function that has a product expansion over its zeros in the form 

0 0 2
0

( ) (0) 1
n n

x
J x J







 
  

 
 , in case Riemann Hypothesis is true (and the self-adjoint 

operator is a Hamiltonian whose potential is given in (14) ) the Gelfand-Yaglom 
theorem used to compute the quotient of two functional determinants , could be used to 
give a representation of the Riemann Xi-function

 
 

2 ( )
2

2 ( )
0

1
det ( ) 2
det( ) ( ) 1/ 2

z
x

z
x free

i zV z L

V z L





        
   

    L  , 0 0V        (20)

With the initial conditions, ( ) ( )(0) 0 (0)z z
free    and   

( )( ) (0)(0)
1

zz
freedd

dx dx


  , 

the Riemann Xi-function can be expressed as the quotient of 2 Functional determinants, 
from (20) we get the usual Semiclassical quantization condition namely 

 2
2det 0x V E    , the roots of the functional determinant will be the Eigenvalues of 

the Hamiltonian operator  2
n nE E  , the boundary conditions chosen for this 

Hamiltonian will be the following (0) 0 ( )     in order to evaluate the 

determinant (20) , as always the functions  ( ) ( )( ) , ( )z z
freex x  are evaluated by solving 

the initial value problem   2 ( ) ( ) 0z
x j jV z x        with ( ) (0) 0z

j     
( ) (0)

1
z

jd

dx


 . 

In order to solve this last equation one could use the WKB semiclassical approximation 
so ( ) ( )z

j x can be approximated by

  1/ 4( )
2 2 2

0 0

( ) ( ) exp ( ) exp ( )
x x

z
j x z V x C i z V t dt C i z V t dt


 

               
     

    (21)

The constants C are obtained from the initial value conditions for the wavefunction, 

they satisfy the equation  0C C   since ( ) (0) 0z
j 

  Also if we add a term 
1

4
to the potential 2 ( )V x inside (14) then the eigenvalues wouls 

be 
2 21

4 ns   the square of the modulus of the Riemann Zeros. The condition for the 

determinant to be proportional to  
1

2
i E   

 
is a necessary and sufficient condtion to 
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prove RH, due to the self-adjointness of  †
2 2H H , the condition for the potential 

1/ 2
1

2 1/ 2

2 1
( )

2

d
V x Arg i x

dx



    

 
itself is not enough since there could still be some 

imaginary zeros of the Riemann Xi-function that would not appear inside the spectrum 
of the Hamiltonian, note that this is similar what it happened with the Quantum 

mechanical model for the zeros of the sine and Bessel functions  sin x   , 0 ( )J x . As 

we have pointed out before    ( )
reg

Argf x Argf x i  , so 
'( ) 1

( )

f x i dn
m

f x i dx


 

 
    

is only nonzero for the values  ( ) 0if x  , n(x) here ‘counts’ the zeros of f(x).

NUMERICAL CALCULATIONS AND THE LINK BETWEEN THE 
RIEMANN-WEYL FORMULA FOR PRIMES AND THE DENSITY OF 
STATES OF OUR HAMILTONIAN H2

In this section we will explain why this method works, also we will compare our trace 
with the explicit formula of Riemann and Weyl relating a sum involving primes to 
another sum involving the imaginary part of the zeros.

o Why this method  works ?:

Using the semiclassical approach we have stablished that the inverse of potential V(x) is 
related to the half-derivative of the eigenvalues counting function N(E) , for the case of 
the infinite potential well ( V=0 and L=1 ) the linear potential and the Harmonic 

oscillator, using the semiclassical WKB approach together with 
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
 

Harmonic oscillator  
2( )

4

x
V


     ( )

E
N E


          1 2

( )
E

V x


      (22)

Linear potential   V kx        
3/ 22

( )
3

E
N E

k
               1( )

x
V x

k
      (23)

Infinite potential well  0V     ( )
E

N E


           1( ) 1V x         (24)

In all cases and for simplicity we have used the notation  2 1m L   , here ‘L’ is the 
length of the well inside (22) , (23) and (24) are correct results that one can obtain using 
the exact Quantum theory , (24) gives 1 instead of the expected result  0V  , in order 
to calculate the fractional derivatives for powers of E we have used the identity 

1/ 2
1/ 2

1/ 2

( 1)

( 1/ 2)

k
kd E k

E
dE k

 

 

[11] , a similar formal result can be applied to Bohr’s atomic 

model for the quantization of Energies inside Hidrogen atom 
2

13.6
E

n
  .
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For the general case of the potentials  mV Cx   with m being a Natural number our 

formula , 
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
  predicts that the approximate number of energy levels 

below a certain Energy E will be (approximately) 
1 1

2

1
1

1
( )

1 34
2

mm
N E E

m




   
 
   
 

, see 

[11] for the definition of the half-integral for powers of ‘x’ . It was prof. Mussardo [10]  

who gave a similar interpretation to our formula  
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
  in order to 

calculate the Quantum potential for prime numbers, he reached to the conclussion that 

the inverse of the potential inside the Quantum Hamiltonian  
2

2
( )

d
V x H

dx
   giving 

the prime numbers as Eigenvalues/Energies of H , should satisfy the equation  
1/ 2

1
1/ 2

( )
( ) 2

d x
V x

dx

  , here  ( ) 1
p x

x


 is the Prime counting function that tells us 

how many primes are below a given real number x , there is no EXACT formula for  
( ) 1

p x

x


 so Mussardo used the approximate expression for the derivative given by 

the Ramanujan formula  
1/ 2 1/

1/ 2
1

( ) ( )

log

n

n

d x n d x

dx n dx x

  




 
  

 
   [10]  , where  ( )n is the 

Mobius function , a number-theoretical function that may take the values -1,0, 1  ( see 
Apostol [1] for further information ).

A formal justification of why the density of states is related to the imaginary part of the 

logarithmic derivative of  
1

2
iz   

 
can be given as the following, let us suppose that 

the Xi-function has only real roots , then in the sense of distribution we can write

2
0

' 1 1

2 2
n

n

n

a
i z

z iz


  





      
              

'
Re ,n na s z




 
  

 
              (25)

Here, 0  is an small quantity to avoid the poles of (16) at the Riemann Non-trivial 
zeroes   n ,taking the imaginary part inside the distributional  Sokhotsky’s formula  

1 1
( )i x a P

x a i x a



         

one gets  the density of states  

1 1
( ) log ( )

2E n
n

g E m iE E  






        
 

                 (26)

Integration with respect to E will give the known equation  
1 1

( )
2

N E Arg iE


   
 

, a 

similar expression can be obtained via the ‘argument principle’ of complex integration  
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( )

1 '
( )

2 D E

N E z dz
i


 

  , with D a contour that includes all the non-trivial zeros below 

a given quantity E , the density of states can be used to calculate sums over the Riemann 
zeta function (nontrivial) zeros, for example let be the identities

0

1 1
( ) '( )

2
f dsf s Arg is



 


     
 

              log

1

' 1 ( )

2
is n

n

n
iz e

n








    
 

         (27)

Combining these both [6] we can prove the Riemann-Weyl summation formula

1

( ) 1 ' 1
( ) 2 (0) log 2 (log ) ( )

2 2 4 2n

i n is
f f g g n dsf s

n

 




 

              
        (28)

With  ( ) ( )f x f x  and ( ) ( )g x g x  and  
0

1
( ) cos( ) ( )g y dx yx f x





  , if we are 

allowed to put  cos( )f ax into (20) ,then the Riemann-Weyl formula can be regarded 
as an exact Gutzwiller trace for a dynamical system with Hamilton equations 

2 p x           
V

p
x


 


        

1 1
( )

2
n E Arg iE


   
 

    
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
     (29)

Then the Gutzwiller trace for this dynamical one dimensional system (x,t) is  

1

( )
( ) ( ) cos( log )smooth

n

n
g E g E E n

n






  , for big E the smooth part can be 

approximated by  
log

( )
2smooth

E
g E


 . The sum involving the Mangold function  ( )n

is divergent, however it can be regularized in order to give the real part of  the 

logarithmic derivative of Riemann Zeta   
' 1

2
iE



   
 

o Numerical solution of Schröedinguer equation:

In order to solve our operator  
2

22
( )

d
V x H

dx
   with boundary conditions  

(0) ( ) 0y y L    610L  we need to calculate the potential 2 ( )V x , first since 
1/ 2

1
2 1/ 2

2 1
( )

2

d
V x Arg i x

dx



    

 
we may use the Grunwald-Letnikov definition of 

the half-derivative to write the inverse of the potential in the form

1
2

0

1/ 22 1 1
( ) ( 1)

2 2
m

m

V x Arg i x m
m

 







                 
      (30)
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Here ‘ ’ is an small step used to define the fractional derivative and  
( 1)

( 1) ( 1)

n n

m m n m

   
       

are the binomial coefficients , giving values of ‘x’ inside 

(30) we can compute the inverse of the potential 2 ( )V x , in order to get 2 ( )V x , we 

simply reflect every point  1
2( , ( ))j jx V x obtained in formula (30) across the line y x

to get the numerical values for the potential 2 ( )jV x , we have solved numerically the 

Schröedinguer equation for 2 ( )V x using this method to obtain

n 0 1 2 3 4
Roots2 199.7897 441.9244 625.5401 925.6684 1084.7142

Eigenvalues 198.8351 441.9101 625.5950 925.6398 1084.6789

The final step is to solve the initial value problem   2 ( ) ( ) 0x zf x z y x    with 

(0) 0zy  and  
(0)

1zdy

dx
 for 2( ) ( )f x V x and for  ( ) 0f x  (free particle) in order to 

obtain the functional determinant ( )

2
0 ( )

( )1 1
1

2 2 ( )
z

n n z free

y Lz
i z

y L
 







           
     

   L 

o Corrections to the Wu-Sprung potential:

We can split our inverse potential into 2 terms , a first term is proportional to the real 

part of the Half integral of  
' 1

2
i s



  
 

, and an smooth part that was known to Wu 

and Sprung [14] , that used the approximation ( ) log
2 2 2

T T T
N T

  
  for big ‘T’ 

1/ 2 1/ 2
1

1/ 2 1/ 2 3/ 2

1/ 2 1/ 2

1/ 2 1/ 2

1 ' 1 1 ' 1
( ) log

2 2

1 1 ' 1 1 ' 1

4 2 4 22 2

d d x
V x ix ix

dx dxi i

d ix d ix

dx dxx i i

  
   

  

 


 

 

 

                       
                        

    (31)

Here ( )n stands for the Von Mangoldt function, that takes the value log p iff 

  kn p k N  and 0 otherwise .The first part is just the oscillating contribution to the 
potential produced by the distribution of the prime numbers, and it is equal to the zeta-

regularized value of the sum  
 

2

( )cos log / 4

logn

n s n

n n





 
 , the idea is that the potential 

V(x) must be compatible with the semiclassical approximation of Quantum mechanics , 
but also if the imaginary part of the zeros are the Eigenvalues of a certain operator, it 
must also obey the Rieman-Weyl trace formula relating primes and Riemann Zeta zeros
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1

( ) 1 ' 1
( ) 2 2 (log ) ( ) (0) log

2 2 4 2n

i n ir
h h g n drh r g

n

 




 

              
       (32)

If we combine (23) with the semiclassical approximation for the sums over eigenvalues

1
/ 4 / 4 1( )

( )niuE iux i iux i

n

dV x
e dxe i u dxe V x

u dx
  

 
  

  

           (33)

In order to obtain  1( )V x from (24) we take the inverse Fourier transform, this involves 

the sum over Rieman Zeros   1/ 2
( )H x x



  
    , if we put inside formula  (32) 

 
1/ 2

1/ 2

1/ 2

( )
( )

d H x u
H x u x u

dx


     with  

1   if 0
( )

0   if  0

x
H x

x


  

  and use the integral 

/ 4

0

iux idx
e e

ux


 we find the desired result given in (29) , so our inverse potential 

1( )V x is in perfect agreement with the one given by Wu and Sprung, and also is 
compatible with the Riemann-Weyl expression (at least in distributional sense) relating 
Riemann Zeros and prime numbers. This inverse potential according to Riemann-Weyl 
formula plus the Zeta-regularized series (ignoring the divergent terms proportional to  

k  as 0  )  has an oscillating and an smooth part

 
1

( )cos log / 4

logn

n s n

n n





 
          

' 1

4 2

x dt it
e

x t

            (34)

The first term can be regularized to give the Real part of  
1/ 2

1/ 2

' 1

2

d
is

ds







  
 

for any ‘s’ 

the second one is just the real part of  
1/ 2

1/ 2

' 1

4 2

d is

ds





     
, in general since we are 

interested in the Riemann Zeros n   as n  the smooth part can be approximated (for 

big ‘x’) very well by the term 
1/ 2

1/ 2
log

2 2 2

d x x x

dx   
  
 

, but in order our Hamiltonian 

fulfills Riemann Hypothesis , also the oscillating part must be included  into the 
potential, this is a fact that is ignored by Wu and Sprung,  the inverse of the potential  

1( )V x can be simply obtained by imposing the Riemann-Weyl formula plus using the 
semiclassical approximation to relate a quantum mechanical Quantities (Energies, 
density of energies) to a pure classical quantity like the potential V(x). Also the formula 

for the Energies 
1 1

( ) arg
2n

n

H x E i x


    
 

 ,   / 2( 1)
( ) ( )

2 2
ss s s

s s      
 

is 

just a consequence of the Riemann-Weyl formula , that stablishes a relationship 
between Riemann Zeros and prime numbers and that we have considered to be valid 
even in the distributional sense.
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If we plug the function   2 ( , )r s h r s   ,s >0,inside the Riemann-Weyl formula , 

and use the Zeta regularization algorithm for the divergent series 

log

1

( ) ' 1

2
i s n

reg
n

n
e i s

n








     
 

 then Riemann-Weyl explicit formula gives the 

density of the Energies for the Hamiltonian 2
n nE  as

 2 1 1 ' 1 1

2 22 2

' 1 1 ' 1 1 log
( )

4 2 4 24 4 2

regs i s i s
s s

s s
i i s

s s s



  
 

 

           
   

    
              


  s >0 (35)

Where we have used the property of the Dirac delta function    
( )

'( )
n

n

x n

x x
f x

f x







with  ( ) 0nf x  inside (35) . Integration over ‘s’ gives the zeros counting function   

1 1
( )

2
n E Arg i E


   
 

, also if we approximated the sum  2 s


   by an 

integral over the phase space   2

V

E H dpdq  in 1-D we find the Abel integral 

equation  for the inverse of the potential  
1

2

0

( )
E dVdu

E C
duE u





 , C R , a similar 

equation can be obtainedusing differentiation with respect to ‘E’ inside  the Bohr-
Sommerfeld quantization conditions.

Since (35) is only valid for positive ‘s’ what happens for 0s  ?, the idea is that for 
negative E (or s) the Eigenvalue counting function 

2

( ) 1
E

N E
 

  is equal to 0 (there are 

no negative eigenvalues) in this case the equation for the inverse potential and the 
potential turn out to be of the following form

   

1/ 2

1 1/ 2

2 1 1
rg   x>0

( ) 2 2

0                                           x 0

d
A i x

V x dx




           
 

   so  ( ) 0V x  for   x 0    (36)

And for positive ‘x’ we have to invert the function 
1/ 2

1/ 2

2 1
rg

2

d
A i x

dx



    

  
, from 

(36) we get that there is a potential barrier at x=0 so we must impose the eigenvalue 
conditions for our Schröedinguer equation as  (0) 0 ( )y y  

In order to calculate the inverse of the potential we can split it into 2 terms

3/ 2

1 1 1
rg ln ln

4 2 2 2 2 8 48

i x x x
A x x O

xx

 


                    
  (37)
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(37) is the smooth part of the potential but we still have to write the oscillating part, if 

we use the Dirichlet series representation   
2

( ) 1
log

log s
n

n
s

n n







  valid for Re(s) >1 , 

then the oscillating part would be the half-derivative 
1/ 2

1/ 2

2 d

dx
of the expression

 
2

sin log1 ( )
rg

2 2 logn

x ni n
A x

n n








   
 

    x >0  (38)

Expression (38) is divergent, due to the sum over the logarithm of prime powers 

 log kp , so it must be truncated after a finite number of terms N , before we apply the 

half derivative operator  
1/ 2

1/ 2

2 d

dx
. Of course alternatives to this potential can also be 

thought , for example if we use the quantization condition  2
C

pdq n   for some 

constant equal or different from ½ or if we want to get the Eingenvalues 

* 2 21
. | |

4n nE s s s     using the WKB semiclassical approximation we would get for 

the inverse of potential (on the positive x-axis) 
1/ 2

1/ 2

2 1 1
rg

2 4

d
A i x

dx
 



  
        

and x=0 for 0x  . For example i the case of Quantum Chaos in one dimension the 

WKB qunatization conditions are 2
4

p

C
pdq n



 

  
 

 here p is a Maslov index , so 

if we set 2p  , we find the usual Bohr-Sommerfeld quantization conditions. Also 

whenever doing the inverse of the function 
1/ 2

1/ 2

2 1
0

2

d
Arg i x

dx
   
 

, we must take 

the branch so ( ) 0V x  (after inversion) this makes that the mean value of the 

Hamiltonian for every Eigenfunction is positive  0
n

nH E

 

Although we have considerEd an operator in the form  2 ( )x V x  , there exists a 

Liouville transform of variables that converts any second order Self-adjoint operator 

( ) ( ) ( ) ( ) ( )
d dF

p u q u F u w u F u
du du

    
 

into an operator of the form  2 ( )x V x  by 

using a new redefinition of the dependent and independent variables by usign the 
Liouville transform:

0

( )

( )

u

u

w t
x dt

p t
                 

2
1/ 4 1/ 4

2

( )
( ) ( ) ( ) ( ) ( )

( )

d q x
V x w x p x w x p x

dx w x
     (39)
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And  1/ 4
( ) ( ) ( ) ( )x w x p x F x  ,also the operator in the form 2 ( )x V x  plus boundary 

condition is the easiest to work with , so we can apply the foundations of the Quantum 
mechanics to the case of the Riemann Hypothesis.

APPENDIX A: FACTORIZATION OF A SECOND ORDER LINEAR 
DIFFERENTIAL OPERATOR INTO A PRODUCT OF TWO 
DIFFERENTIAL LINEAR OPERATORS.

From the theory of the Ajoint linear operators, is easy to prove that any second order 
differential linear operator 2 ( )x V x  can be expressed as the product 

( )
d

L A x
dx          ( )

d
L A x

dx         so  2 ( )x V x L L    and    †
L L    (A.1)

Where the potential V(x) is related to the function ‘A’ by the Ricatti equation  

2( ) ( )
dA

V x A x
dx

  , also the energies of  2 ( )x V x  will be Real (since the operator is 

Hermitian) and positive since

2 2 2| | | | | || || 0x xV L L L L V                       (A.2)

Formula (A.2) tells us that for 1-D systems ALL the energies of the Hamiltonian will be 
Real (since it is a Hermitian operator) and positive, then it can not exist an Unbounded 
Hamiltonian operator in one dimension , for the case of our Hamiltonian whose 
Energies are the square of the imaginary part for the non-trivial zeros of the Riemann 
Zeta function  2

2 2( )x V x H     , 2
n nE  then we have the auxiliar Eigenvalue 

equation  ( ) ( ) ( ) ( )
df

L f A x f x i f x
dx

      . If we introduce the cahnge of variable 

inside (A.1)  logx u and put 
1

2
A    the first term becomes the Theta operator  

u

d
u

du
  , if we also multiply all by  i  , we find that  i L  is just the Berry-

Keating Hamiltonian   
1

2BK

d
i L H i u

du
      
 

  whose Eigenvalues are the 

imaginary parts of the Riemann Zeta zeros. The Theta operator appear inside the Berry-
Keating Hamiltonian because it is conjectured that the imaginary part of the zeros can 
be obtained by the quantization of a dynamical system that violates time-reversal 
symmetry so  ( , ( )) ( , ( ))u ut u t t u t     , however for the square of the Berry-Keating

(classical) Hamiltonian  2 2 2
bkH x p the time reversal symmetry is conserved under the 

change t t , the commutator of the 2 ladder operators involved in our definition of 
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the Hamiltonian is   , 2
dA

L L
dx   it only vanishes for the case of the A being a 

constant function of ‘x’ , for example in a Berry-Keating model.
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