Mapping Penrose-Rindler Null Tetrads to the Advanced and Retarded Wheeler-Feynman-Aharonov Destiny & History Null Tetrads

Jack Sarfatti

Abstract

This is a short mathematical note clarifying the use of Cramer's Transactional Interpretation in the Spinor Qubit Pre-Geometry of Wheeler's IT FROM BIT.

The mapping of the Penrose-Rindler Cartesian null tetrad of orthonormal base vectors to the Wheeler-Feynman tetrad of advanced and retarded 2D spherical wave front orthonormal base vectors is independent of the area/entropy of the wave fronts in the sense of the small 4D regions of LIFs in curved space-time.¹

$$\hat{e}_{R} \equiv \hat{R} \equiv \sin\theta\cos\phi\hat{i} + \sin\theta\sin\phi\hat{j} + \cos\theta\hat{k}$$
$$\hat{e}_{\theta} \equiv \hat{\theta} \equiv \cos\theta\cos\phi\hat{i} + \cos\theta\sin\phi\hat{j} + \sin\theta\hat{k}$$
$$\hat{e}_{\phi} \equiv \hat{\phi} \equiv -\sin\phi\hat{i} + \cos\phi\hat{j}$$
(1.1)

Using Roger Penrose's "abstract index notation" the Cartesian tetrad world vectors are mapped to the Einstein-Podolsky-Rosen entangled Bell pair quantum states of 2 qubit strings.

$$\hat{i} \rightarrow \frac{1}{\sqrt{2}} \left(o^{A} t^{A'} + i^{A} o^{A'} \right)$$

$$\hat{j} \rightarrow \frac{1}{\sqrt{2}} \left(o^{A} t^{A'} - i^{A} o^{A'} \right)$$

$$\hat{k} \rightarrow \frac{1}{\sqrt{2}} \left(o^{A} o^{A'} - i^{A} t^{A'} \right)$$

$$\hat{t} \rightarrow \frac{1}{\sqrt{2}} \left(o^{A} o^{A'} + i^{A} t^{A'} \right)$$
(1.2)

The mapping to the spherical wave advanced and retarded Wheeler-Feynman tetrads comes from the orthogonal transformation of spherical trigonometry. Hence

¹ From the equivalence principle (SEP) the LIF metric field is approximately Minkowski as in 1905 Special Relativity even though the spacetime is curved and the local 4th rank curvature tensor need not be globally zero.

$$\begin{split} \ell_{adv} &= \frac{1}{\sqrt{2}} \left(\hat{t} + \hat{R} \right) \\ &\to \frac{1}{2} \left(\left(o^{A} o^{A'} + i^{A} t^{A'} \right) + \sin\theta \cos\phi \left(o^{A} t^{A'} + i^{A} o^{A'} \right) \\ &+ \sin\theta \sin\phi \left(o^{A} t^{A'} - i^{A} o^{A'} \right) + \cos\theta \left(o^{A} o^{A'} - i^{A} t^{A'} \right) \right) \\ &= \frac{1}{2} \left(\left(1 + \cos\theta \right) o^{A} o^{A'} + (1 - \cos\theta) i^{A} t^{A'} + (\sin\theta \cos\phi + \sin\theta \sin\phi) o^{A} t^{A'} \\ &+ (\sin\theta \cos\phi - \sin\theta \sin\phi) i^{A} o^{A'} \\ &+ (\sin\theta \cos\phi - \sin\theta \sin\phi) i^{A} o^{A'} \\ &+ (\sin\theta \sin\phi \cos\phi - \sin\theta \sin\phi) i^{A} o^{A'} \\ &\to \frac{1}{2} \left(\left(o^{A} o^{A'} + i^{A} t^{A'} \right) - \sin\theta \cos\phi \left(o^{A} t^{A'} + i^{A} o^{A'} \right) \\ &- \sin\theta \sin\phi \left(o^{A} t^{A'} - i^{A} o^{A'} \right) - \cos\theta \left(o^{A} o^{A'} - i^{A} t^{A'} \right) \right) \\ &= \frac{1}{2} \left(\left(1 - \cos\theta \right) o^{A} o^{A'} + (1 + \cos\theta) i^{A} t^{A'} \\ &- (\sin\theta \cos\phi + \sin\theta \sin\phi) o^{A} t^{A'} - (\sin\theta \cos\phi - \sin\theta \sin\phi) i^{A} o^{A'} \right) \\ &m_{WF} = \frac{1}{\sqrt{2}} \left(\hat{\theta} + i \hat{\phi} \right) \\ &\to \frac{1}{2} \left(\cos\theta \cos\phi \left(o^{A} t^{A'} + i^{A} o^{A'} \right) + \cos\theta \sin\phi \left(o^{A} t^{A'} - i^{A} o^{A'} \right) \\ &+ \sin\theta \left(o^{A} o^{A'} - i^{A} t^{A'} \right) + i \left(-\sin\phi \left(o^{A} t^{A'} + i^{A} o^{A'} \right) + \cos\phi \left(o^{A} t^{A'} - i^{A} o^{A'} \right) \right) \\ &= \frac{1}{2} \left(\frac{\sin\theta \left(o^{A} o^{A'} - i^{A} t^{A'} \right) + (\cos\theta \cos\phi + \cos\theta \sin\phi - i \sin\phi + i \cos\phi) o^{A} t^{A'} }{(\cos\theta \cos\phi - \cos\theta \sin\phi - i \sin\phi - i \cos\phi) i^{A} o^{A'}} \right) \\ \end{split}$$

Note in the limit $\theta \rightarrow 0$ defining the North Pole we have²

$$\ell_{adv} \equiv \frac{1}{\sqrt{2}} (\hat{t} + \hat{R})_{\theta \to 0} o^{A} o^{A'}$$

$$n_{ret} \equiv \frac{1}{\sqrt{2}} (\hat{t} - \hat{R})_{\theta \to 0} i^{A} t^{A'}$$

$$m_{WF} \equiv \frac{1}{\sqrt{2}} (\hat{\theta} + i\hat{\phi})$$

$$(1.4)$$

$$\stackrel{1}{\longrightarrow} \frac{1}{2} \begin{pmatrix} (\cos\phi + \sin\phi - i\sin\phi + i\cos\phi) o^{A} t^{A'} \\ + (\cos\phi - \sin\phi - i\sin\phi - i\cos\phi) i^{A} o^{A'} \end{pmatrix}$$

$$\rightarrow 0$$

² Where the cylindrical radial coordinate in the x-y plane $r \rightarrow 0$ in Fig 1 above. Therefore, the azimuthal longitude ϕ is indeterminate, hence, the last line in (1.4) is ambiguous -- similarly for the South Pole. We can imagine the zero statistical mean of randomly distributed ϕ . Of course, the choice of the polar axis is arbitrary.

Similarly, the South Pole $\theta \rightarrow \pi$

$$\ell_{adv} \equiv \frac{1}{\sqrt{2}} (\hat{t} + \hat{R})$$

$$\xrightarrow{\rightarrow}_{\theta \to \pi} i^{A} t^{A'}$$

$$n_{ret} \equiv \frac{1}{\sqrt{2}} (\hat{t} - \hat{R})$$

$$\xrightarrow{\rightarrow}_{\theta \to \pi} o^{A} o^{A'}$$

$$m_{WF} \equiv \frac{1}{\sqrt{2}} (\hat{\theta} + i\hat{\phi})$$

$$m_{WF} \equiv \frac{1}{\sqrt{2}} (\hat{\theta} + i\hat{\phi})$$

$$\xrightarrow{\rightarrow}_{\theta \to \pi} \frac{1}{2} \left((-\cos\phi - \sin\phi - i\sin\phi + i\cos\phi) o^{A} t^{A'} \right)$$

$$\xrightarrow{\rightarrow}_{\theta \to \pi} 0$$
(1.5)