DECELERATION PARAMETER Q(Z) IN FIVE DIMENSIONAL GEOMETRIES, AND DOES A RE APPEARANCE OF QUINESSENCE $\phi(t)$ PLAY A ROLE IN AN INCREASE IN COSMOLOGICAL ACCELERATION AT Z ~. 423?

1

ANDREW WALCOTT BECKWITH

beckwith@aibep.org

Essay written for the Gravity Research Foundation 2010 Awards for Essays on Gravitation, Submitted March $4^{\rm th},2010$

The case for a four dimensional graviton mass (non zero) influencing reacceleration of the universe in five dimensions is stated, with particular emphasis upon if five dimensional geometries as given below give us new physical insight as to cosmological evolution. A calculated inflaton $\phi(t)$ may partly re-emerge after fading out in the aftermath of inflation. The inflaton may contribute to, with non zero graviton mass, in re acceleration of the universe a billion years ago. The inflaton also may be the source of re acceleration of the universe, especially if the effects of a re emergent inflaton are in tandem with the appearance of macro effects of a small graviton mass, leading to a speed up of the rate of expansion of the universe at red shit value of $Z \sim .423$

1 Introduction : What can be said about DM and DE ?

We will start with a first-principle introduction to detection of gravitational wave density using the definition given by Maggiore¹

$$h_0^2 \Omega_{gw}(f) \cong 3.6 \cdot \left\lfloor \frac{n_f}{10^{37}} \right\rfloor \cdot \left(\frac{f}{1kHz} \right)$$
(1)

where n_f is the frequency-based numerical count of gravitons per unit phase space. The

author suggests that n_f may depend upon the interaction of gravitons with neutrinos in plasma during early-universe nucleation, as modeled by M. Marklund *et al*², which is a

supposition the author³ is investigating for a modification of a joint KK tower of gravitons, as given by Maartens⁴ for DM. Assume the stretching of early relic neutrinos that would lead to the KK tower of gravitons--for when $\alpha < 0$, is³,

$$m_n(Graviton) = \frac{n}{L} + 10^{-65} \text{ grams}$$
(2)

. Also Eq. (3) will be the starting point used for a KK tower version of Eq. (4) below. So from Maarten's $^{5}2005$ paper,

$$\dot{a}^{2} = \left[\left(\frac{\tilde{\kappa}^{2}}{3} \left[\rho + \frac{\rho^{2}}{2\lambda} \right] \right) a^{2} + \frac{\Lambda \cdot a^{2}}{3} + \frac{m}{a^{2}} - K \right]$$
(3)
writes $\dot{\mu}^{2} = \left[\left(\tilde{\kappa}^{2} \left[1 + \rho^{2} \right] \right) + \Lambda \cdot a^{2} - 2m + K \right]$

Maartens ⁴also writes $\dot{H}^2 = \left[-\left(\frac{\ddot{\kappa}^2}{2} \cdot \left[p + \rho\right] \cdot \left[1 + \frac{\rho^2}{\lambda}\right] \right) + \frac{\Lambda \cdot a^2}{3} - 2\frac{m}{a^4} + \frac{K}{a^2} \right].$

Also, if $\rho \cong -P$, for red shift values z between zero to 1.0-1.5 with equality, $\rho = -P$, for z between zero to **.5.** $a \equiv [a_0 = 1]/(1 + z)$. As given by Beckwith³ $q = -\frac{\ddot{a}a}{\dot{a}^2} \equiv -1 - \frac{\dot{H}}{H^2} = -1 + \frac{2}{1 + \tilde{\kappa}^2 [\rho/m] \cdot (1 + z)^4 \cdot (1 + \rho/2\lambda)} \approx -1 + \frac{2}{2 + \delta(z)}$ (4)

Eq. (4) assumes $\Lambda = 0 = K$, and the net effect is to obtain, a substitute for DE, by presenting how gravitons with a small mass done with $\Lambda \neq 0$, even if curvature **K** = 0

2 Consequences of small graviton mass for reacceleration of the universe

In a revision of Alves *et. al*, ⁶ Beckwith³ used a higher-dimensional model of the brane world and Marsden⁶ KK graviton towers. The density ρ of the brane world in the Friedman equation as used by Alves *et. al*⁹ is use by Beckwith³ for a non-zero graviton

$$\rho \equiv \rho_0 \cdot (1+z)^3 - \left[\frac{m_g \cdot (c=1)^6}{8\pi G(\hbar=1)^2}\right] \cdot \left(\frac{1}{14 \cdot (1+z)^3} + \frac{2}{5 \cdot (1+z)^2} - \frac{1}{2}\right)$$
(5)

I.e. Eq. (3) above is making a joint DM and DE model, with all of Eq. (4) being for KK gravitons and DM, and 10^{-65} grams being a 4 dimensional DE. Eq. (4) is part of a KK graviton presentation of DM/ DE dynamics. Beckwith¹¹ found at $z \sim .4$, a billion years ago, that acceleration of the universe increased, as shown in Fig. 1.

Fig. 1: Reacceleration of the universe based on Beckwith ³ (note that q < 0 if z < .423)

3. Conclusion: What if an inflaton re-emerges in space-time ? At $z \sim .423$? Padmanabhan¹⁸ has written up how the 2nd Friedman equation as of Eq. (5), which for z

~. 423 may be simplified to read as $\dot{H}^2 \cong \left[-2\frac{m}{a^4}\right]$ would lead to an inflaton value

of , when put in, for scale factor behavior as given by $a(t) \propto t^{\lambda}$, $\lambda = (1/2) - \varepsilon^+$, $0 \le \varepsilon^+ << 1$, of, for the inflaton⁷ and inflation of

$$\phi(t) = \int dt \cdot \sqrt{-\frac{\dot{H}}{4\pi G}} \sim \sqrt{\frac{2m}{4\pi G}} \cdot \left[2\varepsilon^{+}\right] \cdot t^{2\varepsilon^{+}}$$
(6)

Which is assuming Assuming a decline of $a(t) \propto t^{\lambda}$, $\lambda = (1/2) - \varepsilon^+$, $0 \le \varepsilon^+ \ll 1$, As the scale factor of $a(t) \propto t^{\lambda}$, $\lambda = (1/2) - \varepsilon^+$, $0 \le \varepsilon^+ \ll 1$ had time of the value of roughly $a(t) \propto t^{\lambda}$, $\lambda = (1/2) - \varepsilon^+$, $0 \le \varepsilon^+ \ll 1$ have a power law relationship drop below $a(t) \propto t^{1/2}$, the inflaton took Eq. (7) 's value which may affect the increase in the rate of acceleration We relate an energy state to the inflaton if $a(t) = a_0 t^{\lambda}$, then there is a potential of ⁷

$$V(\phi) = V_0 \cdot \exp\left[-\sqrt{\frac{16\pi G}{\lambda}} \cdot \phi(t)\right]$$
(7)

A situation where both $\lambda = (1/2) - \varepsilon^+$ grows smaller, and, temporarily, $\phi(t)$ takes on Eq. (7)'s value, even if the time value gets large, then there is infusion of energy by an amount dV. The entropy dS \cong dV/T, will lead, if there is an increase in V, as given by Eq. (6) a situation where there is an increase in entropy. If $S \approx N =$ number of graviton states^{3,8} then we have an argument that the re emergence of an inflaton, with a reduction of Eq. (7 in magnitude may be part of gravitons playing a role in the re acceleration of the universe. Finally, Eq. (6) to Eq. (7) as combined with $S \approx N$ as referenced on pages 2 and 3 as a way to link graviton count with entropy may make inter connections between the inflaton picture of entropy generation and entropy connected/ generated with a numerical count of gravitons. What is needed is experimental verification of Eq. (6)

References

- 1. M. Maggiore, *Gravitational Waves*, *Volume 1*: *Theory and Experiment*, Oxford Univ. Press(2008)
- 2. M. Marklund, G. Brodin, and P. Shukla, Phys. Scr. T82 130-132 (1999).
- 3. A. Beckwith, <u>http://vixra.org/abs/0912.0012</u>, v 6 (newest version).
- 4. R. Maartens, Brane-World Gravity, http://www.livingreviews.org/lrr-2004-7 (2004).
- 5. E. Alves, O. Miranda. and J. de Araujo, arXiv: 0907.5190 (July 2009).
- R, Maartens *Brane world cosmology*, pp 213-247 from the conference *The physics of the Early Universe*, editor Papantronopoulos, (Lect. notes in phys., Vol 653, Springer Verlag, 2005).
- 19. T. Padmanabhan, An Invitation to Astrophysics, World Scientific series in Astronomy and Astrophysics, Vol. 8
- 8. Y. Ng, Entropy 2008, 10(4), 441-461; DOI: 10.3390/e10040441