Mathematical Physics

1407 Submissions

[4] viXra:1407.0125 [pdf] submitted on 2014-07-17 07:16:32

Stop-Squark Mass Estimation Using the Higgs-Boson in the Context of the Ancient-Word-Theory

Authors: Klaus Lange
Comments: 3 Pages. Main text in german.

In consideration of the Higgs-mass 125 – 126,5 GeV/c^2 the estimation in [L] of the STOP-squark will be adjusted to 344 +/- 86 GeV/c^2.
Category: Mathematical Physics

[3] viXra:1407.0086 [pdf] submitted on 2014-07-12 08:16:52

The Fractal Geometry of the Quantum Vacuum

Authors: J Salvador Ruiz Fargueta
Comments: 3 Pages.

Using a simple mathematical tool and a basic properties of quantum vacuum fluctuations discover its hidden structure. The fractal dimension of the energy of fluctuations is 9, allowing you to occupy a space of nine dimensions: the three regular 6 more compacted. This special geometry of ordinary dimensions / compacted determines energy dependence of the inverse distance, allowing vacuous stability and appearance of the quantum vacuum.
Category: Mathematical Physics

[2] viXra:1407.0079 [pdf] submitted on 2014-07-11 06:50:56

Plan B (1): Berechnung Der Zahl pi Durch Ein Ensemble Einfacher Objekte.

Authors: Stefan G. Freundt
Comments: 10 Pages. German

We are surrounded by round objects. Planets, suns, stones, tree trunks and many more objects are round. Likewise, s-orbitals of electrons in atoms are spherically symmetric and thereby round. If we ascertain the surface areas, volumes, or circumferences of these objects, then we inevitably encounter the number pi. Evidently the number pi plays an important role in our environment. Accordingly, pi is included in the formulae used to describe our world. For the calculation of pi, there are an abundance of methods that can be used. In contrast, in this article we are going to pursue the goal of giving objects the simplest possible properties, and enabling these objects to calculate pi en passant. We introduce a system of equations, in which objects only interact with each other through algebraic operations (+-*/ and sqrt) and generate the number pi in a boundary case. Wir sind von runden Objekten umgeben. Planeten, Sonnen, Steine, Baumstämme und vieles mehr sind rund. S-Orbitale von Elektronen in Atomen sind ebenfalls kugelsymmetrisch und damit rund. Bestimmt man von diesen Objekten Ober fläche und Volumen oder Umfang und Flächeninhalt, begegnet man unweigerlich der Zahl pi. Offenbar nimmt die Zahl pi eine wichtige Rolle in unserer Umgebung ein. In die Formeln zur Beschreibung unserer Welt wird pi entsprechend hineingesteckt. Zur Berechnung von pi gibt es eine Menge Verfahren, die alle für einen Menschen gemacht sind, um pi zu berechnen. Im Gegensatz dazu verfolgen wir in diesem Artikel das Ziel, Objekte mit möglichst einfachen Eigenschaften auszustatten und diese Objekte in die Lage zu versetzen pi "en passant" zu berechnen. Wir stellen ein Gleichungssystem vor, in dem Objekte nur durch algebraische Operationen (+-*/ und sqrt) mit einander wechselwirken und in einem Grenzfall die Zahl pi erzeugen.
Category: Mathematical Physics

[1] viXra:1407.0068 [pdf] replaced on 2015-02-25 06:59:16

Space-Time Sedeons and Their Application in Relativistic Quantum Mechanics and Field Theory

Authors: Victor L. Mironov, Sergey V. Mironov
Comments: 104 Pages. Revised version

This book is a systematic exposition of the algebra of sixteen-component space-time values "sedeons" and their applications to describe quantum particles and fields. The book contains the results of our several articles published in the period 2008-2014. It includes a large number of carefully selected reference material relating to the use of different multi-component algebras in physical problems and may be useful as an introduction to the application of hypercomplex numbers in physics.
Category: Mathematical Physics